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1. Introduction

Dating from the mid-twentieth century, the technique of rotational spectroscopy is a
powerful tool for investigating the structure and dynamics of molecules [1–3]. Work in the
millimeter and submillimeter wavelength range allows the study of small to medium-sized
molecules, and has been a particularly useful technique for the detection of new chemical
species (see, for example, [4–15]). Indeed, for gas-phase molecules, rotational spectroscopy
remains the most accurate and reliable source for structural information [16]. High-
resolution techniques such as Lamb-dip spectroscopy [17,18] allow the extraction of fine
and hyperfine information (i.e., quadrupole coupling, spin–rotation and spin–spin
interactions) and thus provide additional insight that extends into the realm of electronic
structure [19].
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In the field of astrochemistry [20–22], rotational spectroscopy is vital.

Radioastronomical detection has been responsible for the detection of more than 140

chemical species in the interstellar medium [22–24], and is of course the reason why the list of
known interstellar molecules includes exotic polar species such as cyclopropenylidene

[25,26] but lacks more prosaic and non-polar molecules such as ethane, despite the probable

existence of the latter in space. In the usual case, molecules found in space are first detected
in the laboratory by rotational spectroscopy. The determination of precise rotational

constants and centrifugal distortion parameters then enables the prediction of line positions

in regions most accessible to radioastronomy (see, for example, Refs. [27–30]).
The detection, recording, and interpretation of experimental rotational spectra can

be significantly facilitated by theoretical predictions (see, for example, Refs. [4,15,31]).
Theoretical values for the relevant spectroscopic observables can be used to guide

experimental investigations; in particular, accurate predictions of rotational constants

permit laboratory spectroscopists to carry out searches in relatively narrow ranges of the
frequency spectrum, thereby greatly facilitating the detection of unknown molecules.

Once the spectrum is recorded, calculated spectroscopic parameters can also be useful for

making assignments, especially in the more complicated spectra that are characteristic

of radicals and/or molecules containing quadrupolar nuclei. Finally, theory is also
important for extracting information from spectra. Computed vibrational corrections are

vital for determining reliable equilibrium (bottom of the potential) structures [32], as these

cannot be determined explicitly from the ground-state rotational constants that are usually
measured.

The theoretical prediction of rotational spectra involves two tasks, namely (a) the

determination of the required spectroscopic parameters, and (b) the simulation of the

spectra based on the given set of spectroscopic parameters. The latter typically involves

the diagonalization of an appropriate Hamiltonian. This step will not be reviewed in this
work, and we refer the interested reader to the literature [33–35]. The focus of this review

will be instead on the theoretical prediction of those parameters relevant for rotational

spectroscopy. The accurate determination of these requires a quantum-mechanical
treatment of the molecular system under consideration. The parameters of interest are

the rotational constants that are related to the moments of inertia (and, hence, to the

geometry of a molecule), first-order properties such as the dipole moment (which governs

the intensities of rotational transitions) and electric-field gradients (for the quadrupole
coupling), as well as higher-order properties such as the spin–rotation tensor required

for the hyperfine interactions. All of these properties depend on the geometrical and

electronic structure of the molecule under consideration and are thus accessible via

quantum-chemical calculations. In addition, the vibrational contributions (especially those
associated with the vibrational ground state of the molecule) are vital for accurate

predictions. To lowest order, the theoretical prediction of ground-state vibrational

corrections depends on the quadratic and cubic force field of the molecule and can
again be determined in a straightforward manner from quantum-chemical calculations

(see, for example, Refs. [36–38]).
In this review, we will provide a computational chemist’s perspective of rotational

spectroscopy and discuss how state-of-the-art quantum-chemical methods can best be used
for the accurate determination of the essential spectroscopic parameters. In the next

section (Section 2), we begin with a brief description of the theoretical background of
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rotational spectroscopy which will be followed by a brief discussion of vibrational
perturbation theory (Section 3). In Section 4, currently available quantum-chemical
techniques are presented and their implementation for the calculation of the parameters
of interest is discussed. Following that, the use of quantum-chemical calculations in the
area of rotational spectroscopy is reviewed and discussed in Section 5; focus is on the
accuracy that can be achieved in the quantum-chemical calculations via applications
to specific examples.

2. Rotational spectroscopy

2.1. Hamiltonian operator and energy expressions for rotational spectroscopy

The Hamiltonian of a fixed rigid rotor is simply the kinetic-energy operator, which is
most conveniently expressed in terms of the components of the angular momentum Ĵ [1,2].
In a molecule-fixed coordinate system with the principal axes x, y, and z, this operator is

Ĥrot ¼
1

2

Ĵ
2

x

Ix
þ
Ĵ
2

y

Iy
þ
Ĵ
2

z

Iz

0
@

1
A, ð1Þ

where Ĵx, Ĵy, and Ĵz are the components of Ĵ and Ix, Iy, and Iz the principal moments
of inertia.

The eigenvalues of the Hamiltonian given in Equation (1) are the quantized energies
from which the transition frequencies are determined. With the rotational Hamiltonian
given in terms of angular-momentum operators, one often makes use of a representation
in terms of angular-momentum eigenfunctions in order to find the energy levels [1,2].
If the Hamiltonian commutes with the angular-momentum operators, it will be diagonal
in such a representation. In all cases, however, the required matrix elements for the
Hamiltonian are readily obtained from the known matrix elements of the angular-
momentum operators.

It is useful at this point to recall the most important facts concerning angular-
momentum operators. We start by describing the commutation relations of Ĵ in the
space-fixed system, where X, Y, and Z denote the corresponding axes. Then, it is easily
shown that Ĵ 2 (¼Ĵ 2

X þ Ĵ 2
Y þ Ĵ 2

Z) commutes with its components, for example,

Ĵ
2
, ĴZ

h i
¼ Ĵ

2
ĴZ � ĴZĴ

2
¼ 0: ð2Þ

However, the components of Ĵ do not commute among themselves; instead they satisfy
the commutation relations1

ĴX, ĴY

h i
¼ iĴZ,

ĴY, ĴZ

h i
¼ iĴX,

ĴZ, ĴX

h i
¼ iĴY: ð3Þ

Therefore, only Ĵ 2 and one projection of Ĵ, typically chosen as the Z component, have
common eigenfunctions, which are usually designated as jJ,M i. Starting from the
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commutator rules given in Equation (3), the following eigenvalue equations for Ĵ 2 and ĴZ
are obtained,

Ĵ
2
jJ,Mi ¼ JðJþ 1ÞjJ,Mi

ĴZjJ,Mi ¼MjJ,Mi: ð4Þ

Here, the quantum number J is a non-negative integer and M takes the values M¼ J, J�1,

J�2, . . . ,�J. The non-vanishing matrix elements of Ĵ 2 and ĴZ in the J, M representation
are thus

hJ,MjĴ
2
jJ,Mi ¼ JðJþ 1Þ

hJ,MjĴZjJ,Mi ¼M: ð5Þ

In the next step, we apply what has been discussed so far to determine the eigenvalues
of the rotational Hamiltonian. Let us consider as an example the symmetric-top
rotor [1–3], which has two identical moments of inertia, with the third one being different.

Using a molecule-fixed coordinate system with z as the symmetry axis, it is easily
demonstrated that the component of angular momentum about this internal symmetry
axis, Ĵz, is a constant of motion and commutes with Ĵ 2 which is also a constant of motion
[1–3]. Thus, both Ĵz and ĴZ commute with Ĵ 2 and, as they also commute with each other

[1,2], they have a common set of eigenfunctions, jJ,K,Mi. The eigenvalues of Ĵ 2 and ĴZ
are those previously given (see Equation (4)). In a similar way, the eigenvalues of Ĵz can be
found from the commutation rules of the angular-momentum operators expressed in the

molecule-fixed coordinate system [2]

Ĵ�, Ĵ
2

h i
¼ 0 for all � ¼ x, y, z

Ĵ�, Ĵ�

h i
¼ �iĴ� for �,�, � ¼ x, y, z and cyclic permutations ð6Þ

which differ from those for the space-fixed components only by sign [1–3]. For the

symmetric top, the diagonal matrix elements are thus

hJ,K,MjĴ
2
jJ,K,Mi ¼ JðJþ 1Þ

hJ,K,MjĴZjJ,K,Mi ¼M

hJ,K,MjĴzjJ,K,Mi ¼ K, ð7Þ

where, in analogy to M, K takes the values K¼ J, J� 1, J� 2, . . . ,�J.
The Hamiltonian for a symmetric top can be expressed in terms of Ĵ 2 (with Ix¼ Iy)

and Ĵ
2

z

Ĥrot ¼
Ĵ
2

2Ix
þ

1

2Iz
�

1

2Ix

� �
Ĵ
2

z : ð8Þ

Making use of the eigenvalues previously introduced, the following expression for the
eigenvalues of the rotational Hamiltonian in Equation (8) is easily derived:

EJ,K ¼ hJ,K,MjĤrotjJ,K,Mi ¼
1

2

JðJþ 1Þ

Ix
þ

1

Iz
�

1

Ix

� �
K2

� �
: ð9Þ
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Further notational simplifications of this expression are possible if one introduces the
rotational constants2:

B� ¼
1

2I�
, ð10Þ

where � stands for x, y, or z. The x, y, and z axes are frequently denoted as a, b and c,
but the order of the correspondence is not unambiguous and is a matter of choice.
The particular choice (which can be accomplished in six different ways) defines a
‘‘representation’’ (Ir, IIr, IIIr, Il, IIl or IIIl), which is explained, for example, in Ref. [39].
The a, b, c notation also leads (by convention) to the usual definition of the rotational
constants A, B, and C with A�B�C. Therefore, Equation (9) can be rewritten in the case

of a prolate (American football-like) top (A4B¼C ) as3

EJ,K ¼ BJðJþ 1Þ þ ðA� BÞK2, ð11Þ

and in the case of an oblate (pancake-like) top (A¼B4C) as

EJ,K ¼ BJðJþ 1Þ þ ðC� BÞK2: ð12Þ

For a more detailed discussion of the classifications of molecules in terms of rotators
as well as the corresponding energy and wavefunction expressions together with the
selection rules, the reader is referred to more specialized literature on this topic (see, for
instance, [1–3]). Here, we simply recall the energy expression for the linear (or diatomic)
rotor as it might be useful in subsequent discussions.

For a linear rigid-rotor, the simple energy expression

EJ ¼ BJðJþ 1Þ ð13Þ

applies. Only one rotational constant is needed as Iz¼ 0 and Ix¼ Iy� I. In contrast, the

energy-level structure of asymmetric rotors (three unequal moments of inertia) is quite
complicated and can in fact no longer be expressed in terms of a convenient equation.

In the discussion so far, we have focused on the rigid rotor. This has proved in many
cases to be a useful approximation for the interpretation of rotational spectra.
Nevertheless, a more detailed theoretical treatment needs to account for the non-rigidity
of the molecules in the way that the nuclear positions are no longer fixed at their
equilibrium positions. While the effect of molecular vibrations on the spectroscopic
parameters is treated in Section 3, we discuss here the effect of the rotation itself on the
energy levels. This effect is easily visualized in classical terms and known as centrifugal
distortion.

The phenomenological Hamiltonian for a semi-rigid rotor with centrifugal distortion
included can be written in the form [1–3]

Ĥrot ¼
1

2

X
�,�

�e
��Ĵ�Ĵ� þ

1

4

X
�,�,�,�

�����Ĵ�Ĵ�Ĵ� Ĵ� þ
X

�,�,�,�,",�

�����"�Ĵ�Ĵ�Ĵ� Ĵ�Ĵ"Ĵ� þ � � � , ð14Þ

where ��� are elements of an effective inverse inertia tensor, Ĵ� is the �-th component
of the total angular momentum, and the sums over �, �, �, �, 	, � run over the inertial axes.
The first term on the right-hand side represents the usual rigid-rotor energy, while the
others introduce contributions due to centrifugal distortion. The ����� and �����	� are the
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quartic and sextic centrifugal-distortion constants, respectively. The former are given by

the expression

����� ¼ �
1

2

X
r

�r
��ð!rÞ

�1�r
��, ð15Þ

with !r as the r-th harmonic frequency and �r
�� as the first derivative of ��� with respect

to the r-th normal coordinate. Higher-order terms, i.e., sextic, octic, . . . terms, are also

often considered in the analysis of experimental spectra, but quantum-chemical

calculations usually neglect them.
A convenient way to treat the effect of centrifugal distortion on rotational spectra

is perturbation theory. Setting up the rigid-rotor problem in the principal-axis system the

Hamiltonian in Equation (14) can be expressed as

Ĥrot ¼ Ĥ
0

rot þ Ĥ
0

dist, ð16Þ

where Ĥ
0

rot is the Hamiltonian given in Equation (1) and Ĥ
0

dist is the perturbation operator

that corresponds to the second term on the right-hand side of Equation (14). A detailed

discussion of the perturbative treatment of centrifugal-distortion effects is found in

Ref. [40]. Here, we focus only on those issues that might be useful in the context of this

review. As in the case of the rigid-rotor, we restrict our discussion to some representative

cases.
For symmetric-top molecules Ĥ

0

dist can be rewritten as

Ĥ
0

dist ¼ �DJĴ
4
�DJKĴ

2
Ĵ
2

z �DKĴ
4

z : ð17Þ

The D’s are the quartic centrifugal-distortion constants of the symmetric top and can be

written as combinations of the �����’s [1,40]. The corresponding energy correction is then

E 0dist ¼ �½DJJ
2ðJþ 1Þ2 þDJKJðJþ 1ÞK2 þDKK

4�: ð18Þ

In the case of a linear molecule, the expression of Ĥ
0

dist is with

Ĥ
0

dist ¼ �DĴ
4
, ð19Þ

simpler and gives rise to an energy correction of the form

E 0dist ¼ �DJJ
2ðJþ 1Þ2: ð20Þ

The situation for asymmetric-top molecules is substantially more complicated. Inclusion

of centrifugal-distortion effects is here usually accomplished by means of a so-called

reduced Hamiltonian. We do not give details and instead refer the reader to Watson’s

original papers [40–43] as well as to the perhaps more accessible summary found in

Ref. [1].
Rotational transitions are induced by the interaction of molecular electric-dipole

components (fixed in the rotating body) with the electric components (fixed in space) of

the radiation field. Without going into detail, the selection rules governing rotational

transitions are [1,2]

DJ ¼ 0, � 1, DM ¼ 0, � 1: ð21Þ
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Additional selection rules apply for symmetric-top rotors:

DK ¼ 0, ð22Þ

and asymmetric-top rotors:

DK�1 ¼ 0, � 1, DKþ1 ¼ 0, � 1, ð23Þ

where K�1 and Kþ1 represent the quantum numbers of the limiting prolate and oblate
symmetric-top rotors, respectively. The strength of rotational transitions are then
proportional to the square of the corresponding dipole-moment components. The
situation is more complicated in Fourier transform microwave spectroscopy, where the
dependence goes roughly with the first instead of the second power of the moment [44].
Although the most fundamental selection rule for rotational spectroscopy is that the
molecule should have a non-vanishing permanent dipole moment, we note that mole-
cules without a permanent dipole moment can have perturbation-allowed rotational
spectrum [39]. For spherical tops (three identical moments of inertia), for example,
centrifugal-distortion effects can produce a small permanent dipole moment that
allows the observation of the rotational spectrum [1,45] (see also, for instance, Refs.
[46–48]). Analogously, ‘‘forbidden’’ (perturbation-allowed) DK¼�3, �6, . . . rotational
transitions can be observed for symmetric-top rotors [1,45] (see also, for example,
Refs. [49,50]).

With the selection rules for dipole absorption, the rotational frequencies for a linear
rotor are [1]


 ¼ 2BðJþ 1Þ � 4DðJþ 1Þ3 þHðJþ 1Þ3½ðJþ 2Þ3 � J 3� þ � � � : ð24Þ

In a similar manner, the ground-state rotational frequencies of a symmetric-top
molecules [1] are


 ¼ 2BðJþ 1Þ � 4DJðJþ 1Þ3 � 2DJKðJþ 1ÞK 2 þHJðJþ 1Þ3½ðJþ 2Þ3 � J 3�

þ 4HJKðJþ 1Þ3K 2 þ 2HKJðJþ 1ÞK 4 þ � � � , ð25Þ

where the D and H constants are the quartic (first-order) and sextic (second-order)
centrifugal-distortion constants of the symmetric-top molecule, respectively. Expressions
for DJ, DJK, HJ, HJK, and HKJ are given in the literature [1].

2.2. Fine and hyperfine structure in rotational spectra

The fine and hyperfine structure in rotational spectra is due to interactions of the
molecular electric and/or magnetic fields with the nuclear moments. The most important
of these interactions is the one between the molecular electric-field gradient and the electric
quadrupole moments of certain nuclei. As far as magnetic interactions are concerned, the
end-over-end rotation of a molecule generates a weak magnetic field that interacts with
the nuclear magnetic moments to produce a slight magnetic splitting or shift of the lines.
In addition to these two interactions which are referred to as quadrupole and spin–
rotation interactions, respectively, spin–spin interactions between different nuclear spins
may arise.
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The overall Hamiltonian can be written as a sum of different contributions

Ĥ ¼ Ĥrot þ ĤQ þ ĤSR þ ĤSS, ð26Þ

where Ĥrot accounts for the pure rotational part (see previous section) and is given either

by Equation (1) or Equation (14) depending on the treatment of centrifugal distortion.

The additional terms, i.e., ĤQ, ĤSR, and ĤSS account for nuclear quadrupole-coupling,

as well as spin–rotation and spin–spin interactions, respectively.
For nuclei with a quadrupole moment, i.e., those with nuclear spin quantum number

IK� 1, the main contribution to the (hyper)fine structure is due to interactions of the

nuclear quadrupole moments with the electric-field gradients at the corresponding nuclei

given by [51]:

ĤQ ¼
1

2

X
K

eQKq
K
J

IKð2IK � 1ÞJð2J� 1Þ
3ðÎK�ĴÞ

2
þ
3

2
ðÎK � ĴÞ � Î

2

KĴ
2

����
�
: ð27Þ

In Equation (27), the quadrupole moment for the K-th nucleus is denoted by eQK, while q
K
J

is the expectation value of the space-fixed component VK
ZZ of the electric-field gradient

tensor at the same nucleus averaged over the rotational motion:

qKJ ¼
2

ðJþ 1Þð2Jþ 3Þ
½VK

aahĴ
2
ai þ VK

bbhĴ
2
bi þ VcchĴ

2
ci�: ð28Þ

The elements of nuclear quadrupole-coupling tensors are usually reported as

�K�� ¼ eQKV
K
��, ð29Þ

where �, � refer to the inertial axes a, b, and/or c.
Instead of an elaborate exposition, we will provide a brief discussion of how nuclear

quadrupole-coupling affects the rotational spectrum. Let us consider the case of a linear

molecule. In this case, the molecular field-gradient tensor is symmetric about the bond

axis. Therefore, due to symmetry and Laplace’s equation (the electric-field gradient is a

traceless property) we have

Vxx ¼ Vyy ¼ �
1

2
Vzz: ð30Þ

With the selection rules for hyperfine transitions in rotational absorption spectra

DF ¼ 0, � 1 DIK ¼ 0, ð31Þ

where F is the quantum number arising from the coupling scheme F¼ Jþ IK, the

rotational frequencies perturbed by quadrupole coupling are

DE ¼ ErotðJþ 1Þ � ErotðJ Þ þ EQðJþ 1, IK,F
0Þ � EQðJ, IK,F Þ, ð32Þ

where F 0 ¼F, F� 1 and

EQ ¼ ��
3
4DðDþ 1Þ � IKðIK þ 1ÞJðJþ 1Þ

2ð2J� 1Þð2Jþ 3ÞIKð2IK � 1Þ
, ð33Þ
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with D¼F(Fþ1)�J(Jþ1)�IK(IKþ1).
4 The overall effect therefore is that the transition

is split into various hyperfine components, as illustrated in Figure 1 for the J¼ 1 0
transition of a diatomic molecule with one quadrupolar nucleus (in this case � is negative).

Concerning spin–rotation interactions, Flygare derived a formulation in terms of a
second-rank tensor C [52]:

ĤSR ¼
X
K

ÎK � C
K
� Ĵ, ð34Þ

where the sum over K runs over all nuclei of the molecule with non-vanishing spin.5

Let us consider again the case of a linear molecule in order to see how the unperturbed
transition frequency 
0 is affected by one interacting nucleus. Due to symmetry, the spin–
rotation tensor can be characterized in this case by just one spin–rotation constant, C.
The hyperfine energy levels are then given by

ESR ¼
C

2
½FðFþ 1Þ � IKðIK þ 1Þ � JðJþ 1Þ�: ð35Þ

The selection rules are the same as for the quadrupole hyperfine structure (Equation (31)).
Therefore, for a rotational transition J! Jþ 1 we obtain (all quantities in frequency units)


Fþ1 F ¼ 
0 � CðJþ 1Þ þ CðFþ 1Þ, ð36Þ


F F ¼ 
0 � CðJþ 1Þ, ð37Þ


F�1 F ¼ 
0 � CðJþ 1Þ � CF: ð38Þ

An example is given in Figure 2, where the effect of the spin–rotation interaction is
illustrated for the J¼ 2 1 transition in the rotational spectrum of a diatomic molecule
with one nuclear spin (in this case C is negative).

The direct (dipolar) spin–spin interaction between two nuclear magnetic moments ÎK
and ÎL is described by the Hamiltonian

Ĥ
KL

SS ¼ ÎK �D
KL � ÎL ð39Þ

Frequency

Unperturbed

Unperturbed

DF=+1 DF=–1DF=0

J=1-0

Nuclear
quadrupole
coupling

Figure 1. [Colour online]. Effect of nuclear quadrupole coupling on the J¼ 1 0 rotational
transition of a diatomic molecule with one quadrupolar nucleus (IK¼ 5/2, �5 0). The spectrum at
the bottom is the one without quadrupole coupling, while the one at the top illustrates the splittings
due to the coupling.
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where the components of the dipolar spin–spin coupling tensor DKL are given by [1,53,54]

DKL
ij ¼ �

1

c2
�K�L

3ðRKLÞiðRKLÞj � �ijR
2
KL

R5
KL

: ð40Þ

In Equation (40), RKL denotes the vector from nucleus K to L, �K and �L are the

gyromagnetic ratios for both nuclei. From Equation (40), it is clear that the

dipolar-coupling tensor DKL is completely determined by the molecular geometry and

the magnetic properties of the nuclei. An example of the effect of the dipolar spin–spin

interaction on the rotational spectrum is provided by Figure 3.
There are additional, so-called indirect contributions to the spin–spin coupling

constant, which, while important in nuclear-magnetic resonance (NMR) spectroscopy,

play no significant role in rotational spectroscopy (see, for example, Ref. [55]).

Unperturbed Spin-rotation
interaction

Unperturbed

Frequency

DF=+1 (F=5/2–3/2)

DF=+1 (F=3/2–1/2)

DF=0 (F=3/2–3/2)

Figure 2. [Colour online]. Effect of spin–rotation interaction on the J¼ 2 1 rotational transition
of a diatomic molecule with one nuclear spin (IK¼ 1/2, with C5 0). The spectrum at the bottom is
the one without spin–rotation interaction, while the one at the top illustrates the splittings due to
spin–rotation interaction.

Frequency Unperturbed

Unperturbed

Direct spin-spin
interaction

DF=–1 (F=0–1)

DF=0,+1

DF=0,+1

J=1–0

(F=1–0,1–1,2–1)

(F=1–0,1–1)

Figure 3. [Colour online]. Effect of spin–spin interaction on the J¼ 1 0 rotational transition of a
diatomic molecule with two nuclear spins (both IK and IL equal 1/2). The spectrum at the bottom is
the one without spin–spin interaction, while the one at the top illustrates the splittings due to spin–
spin interaction.
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2.3. Molecular parameters needed in rotational spectroscopy

In the previous two sections, the Hamiltonian needed for the description and analysis

of rotational spectra has been discussed in some detail. At this point, it should be

emphasized that this Hamiltonian is an effective Hamiltonian. With this it is meant that

the Hamiltonian solely deals with the rotational motion and for this purpose involves

parameters that are specific for the molecule under consideration and unknown a priori.

They enter the Hamiltonian since it is necessary to integrate over the electronic as well as

vibrational degrees (see next section) of freedom. Nevertheless, the rotational Hamiltonian

introduced in the previous sections is useful, as (a) it permits prediction of the rotational

spectrum as soon as the required molecular (or spectroscopic) parameters are known

(or specified) and, as (b) it allows one to extract the corresponding molecular parameters

from experiment [1–3]. However, here we will go one step further and actually construct

the rotational Hamiltonian on purely theoretical grounds. This is made possible by

exploiting the corresponding expressions for the spectroscopic parameters (partially

already given in the previous sections) and requires, as discussed in the following,

knowledge of the molecular geometry, a treatment of the electronic structure, and

consideration of vibrational effects. The latter are discussed in Section 3, while the

quantum-chemical treatment of the electronic structure is the topic of Section 4. Here,

we only summarize what in principle is needed for the evaluation of the spectroscopic

parameters of a molecule.
Let us start with the apparently most important quantities in rotational spectroscopy,

the rotational constants B�. Ignoring vibrational corrections, the rotational constants,

actually their equilibrium values, are given by the inverse of the principal moments of

inertia I� (see, Equation (10)). Those are obtained by diagonalizing the inertia tensor of the

molecule which is given by

I ¼
X
K

MKðR
2
K1� RKR

T
KÞ: ð41Þ

The inertia tensor can be constructed using an arbitrary Cartesian coordinate system

with its origin at the center of mass, and the sum in Equation (41) runs over all nuclei K

in the molecule. Note that the masses MK refer to atomic masses. One might consider the

use of nuclear masses more appropriate, but the atomic masses are the preferred choice,

as in this way it is possible to account at least partially for the electronic contribution to

the inertia tensor. Of course, as discussed in Section 5.1, it is possible to explicitly consider

the electronic contribution to the moment of inertia and, thus, the rotational constants

via the corresponding rotational g tensor. Returning to Equation (41), we note that the

nuclear coordinates RK needed to calculate the inertia tensor I are those of the equilibrium

configuration. They are obtained in quantum-chemical calculations within a geometry

optimization of the molecule of interest.
Concerning centrifugal distortion, we note that Equation (15) provides the basis for

a computational determination of the quartic centrifugal-distortion constants. Required

here is the harmonic force field of the molecule, i.e., the harmonic frequencies, as well as

the derivatives of the inverse inertia tensor with respect to the normal coordinates.

The determination of the sextic centrifugal-distortion constants requires, as discussed

in Ref. [56], the additional evaluation of the cubic force field.
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The computational determination of the nuclear quadrupole couplings necessitates,
as outlined in Section 2.2, the evaluation of the electric-field gradients at the corresponding
nuclei. These are first-order properties and, thus, computed either as a simple expectation
value of the following (one-electron) operator

V̂
K
¼ ZK

1ðr� RKÞ
2
� 3ðr� RKÞðr� RKÞ

T

jr� RKj
5

, ð42Þ

with RK and r denoting the position of the K-th nucleus and of the electron, respectively,
or as first derivative of the energy with respect to the nuclear quadrupole moment [57].
The perturbing operator is identical to the one given in Equation (42). The nuclear
spin–rotation tensors on the other hand are second-order properties and can be obtained
using either analytic-derivative theory or linear-response theory [58]. This means more
or less that the nuclear spin–rotation tensor is computed as a second derivative with
respect to the nuclear spin and the rotational angular momentum as perturbations.
The corresponding perturbed (one-electron) operators are [58]

ĥð1Þ ¼ �ðI�1JÞ � l̂ ð43Þ

with the electronic angular momentum l̂,

ĥ ð2Þ ¼
1

c2

X
K

�K
IK � l̂K

jr� RKj
3

ð44Þ

with �K as the gyromagnetic ratio of the K-th nucleus and l̂K as the electronic angular
momentum defined with respect the nuclear position RK, as well as

ĥ ð2Þ ¼ �
1

c2

X
K

�KIK
ðRK � rÞ1� RKr

T

jr� RKj
3

I�1J: ð45Þ

Note that the nuclear spin–rotation tensor also involves a nuclear contribution which
is determined solely by the molecular geometry. The spin–spin interaction finally, as is
obvious from the given Equation (40), does not involve an electronic contribution and
can be easily computed from the geometry determined within a geometry optimization.

Table 1 summarizes what is actually needed for a theoretical determination of the
spectroscopic parameters of interest for rotational spectroscopy.

2.4. Frequency ranges and magnitude of spectroscopic parameters in rotational
spectroscopy

According to the region of the electromagnetic spectrum (see Figure 4), rotational tran-
sitions are typically detected in the range of 1GHz to 3THz [1–3,59], mostly depending
on the rotational constant(s) (loosely speaking, the size) of the molecule investigated. The
microwave region covers approximately the range 1–100GHz and the millimeter-wave
region 100–600GHz. The latter overlaps the far-infrared region, which is, for the part
of interest to rotational spectroscopy, also referred to as the submillimeter-wave region.6

Nowadays, the principal classification of rotational spectrometers is the following.
Fourier-transform (FT) techniques can be applied up to roughly 40GHz, while
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continuous-wave (CW) measurements are mostly used in the remainder of the frequency
range. For the former, as Doppler and pressure-broadenings are largely reduced, the
typical resolution is about 5–10 kHz [60,61]. For the latter, as the resolution strongly
depends on different factors but mainly on the Doppler effect, in the best cases, the
resolving power is 20–500 kHz [1,3,62,63]. But, there are special methods such as, for
example, the Lamb-dip technique [17,18] that can be applied to improve the resolution.
With the latter, a resolution of 15–20 kHz can be reached which turns out to be sufficient
to observe in many cases the hyperfine structure in a rotational spectrum.

Concerning the magnitude of the various effects that govern a rotational spectrum,
it should be borne in mind that the frequency of a rotational transition is mainly

Table 1. Computational requirements for the determination of the relevant parameters in rotational
spectroscopy.

Parameter Symbol(s) Computational task(s)

Rotational constant A, B, C Molecular geometry, geometry
optimization

Quartic centrifugal- �����, DJ, DK, DJK, . . . Harmonic force field, i.e., harmonic
distortion constants frequencies and normal coordinates

Sextic centrifugal- �����	�, HJ, HK, HJK, . . . In addition; cubic force field
distortion constants

Dipole moment � First derivative of energy
with respect to electric-field components

Nuclear quadrupole
coupling

�K��, q
K, . . . Electric-field gradient as first derivative

with respect to nuclear quadrupole moment
Nuclear spin–rotation

tensor
CK Second derivative of energy with respect

to angular momentum and nuclear spin
Spin–spin (dipolar)

interaction
DKL Molecular geometry

Figure 4. [Colour online]. Typical frequency ranges used for the detection of rotational spectra.
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determined by the rotational constant(s). Their values, usually given in GHz (in cm�1

when coming from rovibrational investigation), range from less than 1GHz for large
molecules up to �1300GHz for small molecules such as HD. Centrifugal-distortion
effects, with the corresponding constants given in MHz and/or kHz, are small compared to
rotational constants, ranging from less than 1 kHz up to �1GHz, but the effects can be
substantial for high J values. Among the fine and hyperfine interactions, the nuclear
quadrupole coupling is the most dominant. The coupling constants are typically of the
order of hundreds of kHz up to several MHz (depending on the quadrupolar nucleus
under consideration). The corresponding spin–rotation and spin–spin interactions are
smaller and reported in kHz.

3. Vibrational effects

In order to compare theoretically calculated spectroscopic parameters to experiment,
one must consider the effect of molecular vibrations. This is because the properties alluded
to in the previous section depend upon the structure of the molecule and therefore must be
averaged over the vibrational motion of the system under consideration. Theoretical
considerations in this realm are discussed in the present section, where we will outline
a perturbative treatment of vibrational effects and give the relevant expressions for
computing vibrational corrections to rotational constants (Section 3.1) as well as other
spectroscopic parameters (Section 3.2).

3.1. Vibrational perturbation theory

The starting point for our treatment of vibrational perturbation theory is the semi-rigid
Hamiltonian due to Watson [64,65],

Ĥ ¼
1

2

X
�,�

ðĴ� � �̂�Þ���ðĴ� � �̂�Þ þ
1

2

X
r

!rp̂
2
r þ VðqÞ �

1

8

X
�

���: ð46Þ

This operator is expressed in the representation of the dimensionless normal coordinates
defined by

qr ¼ !
1=2
r Qr, ð47Þ

with Qr as the usual normal coordinates, defined via the eigenvectors of the mass-weighted
Hessian, and !r as the associated harmonic wavenumbers. In Equation (46), Ĵ� is again the
rotational angular-momentum operator about axis �, and �̂� represents the �-th
component of vibrational angular momentum. The latter is defined by

�̂� ¼
X
r,s


�rs
!s

!r

� �1=2

qrp̂s, ð48Þ

where the 
�rs are elements of the antisymmetric Coriolis zeta matrix (for a definition,
see Refs. [1–3]); the ��� are those of an effective inverse inertia tensor, which will be
addressed in the next paragraph. V(q) is the potential in terms of the dimensionless normal
coordinates, and the final term in Equation (46), sometimes called the Watson term
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(denoted Û), is due to the use of a normal-coordinate representation and leads to a nearly

constant shift in the spectrum that has negligible spectroscopic importance [66].
The spectrum of the Watson Hamiltonian gives the rovibrational energy-level structure

of the molecule under consideration. The eigenvalues may be approached in a perturbation

expansion in which the inverse inertia tensor and the potential in the Watson Hamiltonian

are both expanded as Taylor series in the normal coordinates qr.

��� ¼ �
e
�� þ

X
r

�r
��qr þ

1

2

X
r,s

�rs
��qrqs þ � � � ð49Þ

VðqÞ ¼
1

2

X
r

!rq
2
r þ

1

6

X
r,s,t

�rstqrqsqt þ
1

24

X
r,s,t,u

�rstuqrqsqtqu þ � � � : ð50Þ

The leading terms are here just the inverse principal moments of inertia

�e
�� ¼

���
Ie�

ð51Þ

with the latter determined for the equilibrium structure of the molecule and the harmonic

potential. The corrections to the potential are then given by cubic, quartic, etc. terms

where �rst, �rstu, etc. specify the corresponding force constants. It can further be shown [1]

that the first and second derivatives of the effective inverse inertia tensor elements can be

written solely in terms of the first derivatives of the inertia tensor itself

�r
�� ¼

@���
@qr

� �
e

¼ �
a��r
Ie�I

e
�

ð52Þ

�rs
�� �

@2���
@qr@qs

� �
e

¼
3

4

X
�

a��r a��s þ a��s a��r
Ie�I

e
�I

e
�

, ð53Þ

where

a��r ¼
@I��
@qr

� �
e

: ð54Þ

A perturbation series can be developed by at least two methods: the contact transfor-

mation of Van Vleck [67,68], first applied to the vibrational problem by Nielsen [69], and

Rayleigh–Schrödinger perturbation theory (RSPT). The former lends itself to expressions

that are written as an expansion in vr þ
1
2 (vr is a vibrational quantum number), while

RSPT is perhaps simpler to apply when one is interested in just a single vibrational state.

Within the RSPT framework, the harmonic potential, the kinetic energy and the leading

term of ��� are zeroth-order quantities, which permit the partitioning of the Watson

Hamiltonian into the rigid-rotor harmonic-oscillator Hamiltonian Ĥ0 and a perturbation

Ĥ ¼ Ĥ
0
þ Ĥ

0
ð55Þ

Ĥ
0
¼
X
�

B�Ĵ
2

� þ
1

2

X
r

!rðp̂
2
r þ q2r Þ, ð56Þ
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where the rotational constant B�, Equation (10), is associated with the coefficient of the

Ĵ
2

� operator. Now, all of the terms in the perturbing Hamiltonian Ĥ 0 contain the position

operator to some power. For example, the Coriolis operator (Equation (48)) is linear in q,

the first and second derivatives of the effective inverse inertia tensor are linear and bilinear in

q, and the higher-order potential terms have three, four, etc. qr operators. These additional

terms are then collected according to an overall order which is defined by the number of qr
operators present. The cubic and quartic potential are treated as first- and second-order

contributions, respectively; the harmonic potential, which is quadratic in qr, is a zeroth-

order quantity. One then applies the usual formulas of perturbation theory, specifically

EL ¼ hijĤ
0
jii ð57Þ

EQ ¼
X
k6¼i

hijĤ
0
jkihkjĤ

0
jii

E
ð0Þ
i � E

ð0Þ
k

ð58Þ

..

.

The designation of these as linear (L) and quadratic (Q) follows a recent paper of Vázquez

and Stanton that applies fourth-order RSPT to the Watson Hamiltonian [70]. Corrections

to a given order (for example, second) for the specific vibrational state i, jii¼ jv1v2 � � � vr � � � i,

are then obtained by inserting the individual contributions to Ĥ 0 into Equations (57) and

(58), and collecting terms that correspond to a fixed overall order.7

Note that the perturbational treatment is only applied to the vibrational wavefunction.

The rotational part is ignored in this treatment, and the angular momentum Ĵ� is simply

considered a parameter which is used to characterize the corresponding corrections later

on. In the context of this review, the important terms are those that multiply Ĵ
2

�, as these

are the effective rotational constants, and contain contributions beyond the rigid-rotator

harmonic-oscillator approximation.
There are no first-order corrections to the simple rigid-rotor rotational constant

defined by the moments of inertia of the equilibrium structure, as a consequence of the

usual harmonic oscillator integral selection rules (specifically hijq2nþ1r jii ¼ 0). In second

order, there are three contributions. The first comes from the quadratic term in the

expansion of the effective inverse inertia tensor,

B�eff (
1

2
i
1

2

X
r,s

�rs
��qrqs

�����
�����i

* +
ð59Þ

(a linear term in the sense above), and two ‘‘quadratic terms’’. The first of these comes

from the Coriolis operator

B�eff (
1

I2�

X
k6¼i

hij�̂�jkihkj�̂�jii

E
ð0Þ
i � E

ð0Þ
k

ð60Þ

and the third term comes from the first-order correction to the inverse mass tensor

together with the cubic anharmonicity

B�eff (
1

2

X
k 6¼i

hij
P

r �
r
��qrjkihkj

1
6

P
r,s,t �rstqrqsqtjii

E
ð0Þ
i � E

ð0Þ
k

þ hermitian conjugate: ð61Þ
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If the vibrational state i is taken to be the ground vibrational level, the rules for harmonic

oscillator integrals [71] and the definitions given earlier in this section can easily be

applied to show that the total second-order correction to the rotational constant B� can be

written as

B�e
2
X
�,r

3ða��r Þ
2

4Ie�
�
1

2

X
r,s

ð
�rsÞ
2
ð!r � !sÞ

2

!r!sð!r þ !sÞ
þ
1

2

X
r,s

�rrsa
��
s

!3=2
s

" #
: ð62Þ

At this point, it is appropriate to comment that the usual contact-transformation method

gives the second-order result [36]

B�i ¼ B�e �
X
r

��r vr þ
1

2

� �
ð63Þ

with �¼ a, b, c and where the sum is taken over all fundamental vibrational modes r.

The corresponding ��r constants8 are given by

��r ¼ �2B
�
e
2
X
�

3ða��r Þ
2

4Ie�
þ
X
s

ð
�rsÞ
2
ð3!2

r þ !
2
s Þ

!rð!2
r � !

2
s Þ
þ
1

2

X
s

�rrsa
��
s

!3=2
s

" #
: ð64Þ

It is important to point out that the individual ��r constants might be subject to a resonance

term in the Coriolis contribution, but that their sum (the corresponding correction to the

ground-state rotational constants, seen in Equation (62)) is unaffected by possible

resonances. This is, of course, as it must be, as the ground state is non-degenerate and its

treatment by perturbation theory should therefore be free of potential singularities. This

issue has caused a bit of confusion in the literature, as it is common to say that one has to

‘‘calculate the �’s’’ to correct rotational constants. That problems affecting the calculation

of the individual vibration–rotation interaction constants has anything whatsoever to do

with calculating the difference between equilibrium and ground-state rotational constants is

manifestly false; one only has to calculate their sum, which can be done quite directly via

Equation (62). It was East et al. [72] who first derived the form of the Coriolis contribution

in Equation (62), by explicitly summing the corresponding contribution in Equation (64)

over the vibrational states. The more direct derivation of the rotational constant correction

outlined here, to our knowledge, does not appear in the previous literature.
It is often assumed that the second-order correction to the rotational constants

outlined in the preceding paragraph accounts nearly quantitatively for all differences

between the ground-state constants B�0 and the corresponding rigid-rotor constants B�e .

The perturbation treatment can be extended to fourth order (the third-order contribu-

tion to the rotational constants again vanishes, as do all odd-order contributions),

although this is a very tedious and somewhat complicated process. Vázquez and Stanton

have recently presented partial analytical equations for the fourth-order correction and

have implemented its full calculation in a numerical sum-over-states program [70]. For

water, it turns out that the fourth-order contribution to the A rotational constant is

quite sizable (410% of the second-order contribution), a result that had been

anticipated in a previous exhaustive theoretical study by Barletta et al. [73]. Apart

from this work, not very much is known about the general magnitudes of the

fourth-order corrections to rotational constants, although experimental values for the
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so-called second-order vibration–rotation interaction constants ��rs have been reported in
the literature (see, for instance, Refs. [74–78]).

3.2. Vibrational corrections to molecular properties

Force-field evaluations in conjunction with vibrational perturbation theory allow the
estimation of zero-point vibrational (ZPV) corrections to first- and second-order
molecular properties. Quantum-chemical calculation of the properties of interest for this
review – those affecting rotational spectra – will be discussed in the following section and
the details of these calculations can be found there. Here, we focus only on how vibrational
averaging of generic properties can be carried out within the framework of quantum
chemistry together with perturbation theory.

The procedure presented here is based on an approach [79] which was described
in detail in Ref. [80] and applied there for NMR shielding tensors. It consists of expanding
the expectation value of the generic property X over the vibrational wavefunction in a
Taylor series around the equilibrium geometry with respect to normal-coordinate
displacements

hXi ¼ Xeq þ
X
r

� @X
@Qr

�
Q¼0
hQri þ

1

2

X
r,s

� @2X

@Qr@Qs

�
Q¼0
hQrQsi þ � � � , ð65Þ

where the expansion is truncated after the quadratic term. The expectation values over Qr

and QrQs are evaluated using a perturbation theory treatment starting from the rigid-
rotator harmonic-oscillator approximation [36]. The corresponding expressions are, in the
lowest order,

hQri ¼ �
1

4!3=2
r

X
s

�rss ð66Þ

and

hQrQsi ¼ �rs
1

2!r
: ð67Þ

The approach described above has been employed to investigate vibrational effects on
various electric and magnetic molecular properties, specifically NMR shielding, spin–spin
and spin–rotation constants as well as nuclear quadrupole-coupling constants, dipole and
quadrupole moments. Other approaches have been suggested in the literature [81,82], as
well. Noteworthy in the present context are the perturbational approach by Ruud et al.
[81,82] based on an expansion around an effective geometry instead of the equilibrium
geometry [83] as well as non-perturbative schemes [84–86]. In their application, the latter
have typically been restricted to small systems.

4. Quantum chemistry

To predict the molecular properties of relevance to rotational spectroscopy (as well as
other spectroscopic techniques beyond the focus of this review), the electronic Schrödinger
equation needs to be solved within the Born–Oppenheimer approximation [87]. While it is
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a straightforward matter – at least in a non-relativistic framework – to write down the

electronic Hamiltonian of a molecule, it is considerably more difficult to find its
eigenvalues and eigenvectors. Nevertheless, it is the electronic problem that is most

fundamental for theoretical treatments in many area of molecular physics and chemistry.
The nuclear-position dependent eigenvalues of the electronic Hamiltonian define the

potential-energy surfaces that are the central paradigm of descriptive chemical physics.
It is these surfaces that must be considered in conventional models of reactivity and

dynamics [88] as well as the treatment of vibrational [71] and electronic spectra [89].
Thus, solution to the electronic problem (or its approximation by some means) is a

prerequisite for studying any sort of nuclear dynamics including the rotational problem
that is the focus of this review. Solution of the electronic Schrödinger equation is the

central problem in quantum chemistry [90–94], which is the principal subject of this
section.9

4.1. Overview

As the electronic Schrödinger equation cannot be solved exactly (except for one-electron
systems such as the hydrogen-like atoms or the Hþ2 ion), the objective of quantum

chemistry is to find approximate solutions that compromise as little accuracy as possible

without incurring excessive costs. The balance between required accuracy and cost is
the reason why there are so many approaches available to computational chemists.

A bewildering array of acronyms for quantum-chemical methods exist, but there are at the
end only a handful of distinct approaches. First of all, it must be realized that the basic

problem in all approaches for the approximate solution of the electronic Schrödinger
equation consists in setting up a suitable ansatz for the electronic wavefunction. The latter

actually is a many-electron function and needs to obey the antisymmetry imposed on
many-fermion systems by the Pauli principle. The usual procedure is to deal first with the

one-electron problem (construction of molecular orbitals – MOs) and then in a second
step with the actual many-electron wavefunction (the electron-correlation problem), as

illustrated in Figure 5. The usual starting point is the choice of a set of one-electron
basis functions (often called atomic orbitals (AOs), as the most common choices are

atomic-centered functions that have spherical symmetry properties [95], see also
Section 4.3) and to construct the molecular orbitals from them. This step already involves

an approximation, as in practice only finite (and thus incomplete) basis sets can be used.
One usually refers to this as the basis-set (or linear combination of atomic orbitals –

LCAO) approximation, and the associated error is termed the basis-set error. In the
second step, the MOs are used to construct many-electron functions. The simplest form

is the Slater determinant [90], but the actual choice for the wavefunction is, at least
for the more accurate schemes discussed here, a linear combination of determinants.

The step from a single Slater determinant to a linear combination enables one to introduce
electron-correlation effects, which by definition cannot be treated using just one

determinant, as the latter corresponds to a model of independent particles. As for the
first step, this second step also introduces an error in quantum-chemical calculations, as a

truncated expansion in terms of Slater determinants only allows for an approximate
treatment of electron-correlation effects. Basis-set and electron-correlation errors are the
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main sources for errors in quantum-chemical calculations and are not independent;
the actual electron-correlation energy strongly depends on the chosen basis set [95].

To summarize the discussion so far, a quantum-chemical calculation is typically
characterized by the choice of both method and basis set. The various methods differ in the
way the actual wavefunction is chosen and how the associated parameters are determined.
Some of the more important schemes are compared in Figure 6 with respect to accuracy
and applicability. From this, it can be seen that the Hartree–Fock self-consistent-field
(HF-SCF, the wavefunction is given by a single Slater determinant and the molecular
orbitals are determined via the variation principle [96]) and density-functional theory
(DFT, based on the Hohenberg–Kohn theorems [97] with the electron density as the
central quantity instead of the wavefunction, though the usual Kohn–Sham version [98] is
equivalent to a single-determinant ansatz with an exchange-correlation functional depend-
ing on the density [99,100]) approaches offer limited accuracy but are quite broadly appli-
cable due to both intrinsic simplicity and extensive algorithmic development in the past
two decades [101]. Somewhat greater accuracy can be achieved with Møller–Plesset (MP)

Figure 6. [Colour online]. Overview of quantum-chemical methods in terms of achievable accuracy
and applicability.

Figure 5. [Colour online]. ‘‘Construction kit’’ for many-electron wavefunctions typically used in
quantum chemistry, thus illustrating the basis-set approximation and the electron-correlation
problem.
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perturbation theory (often also referred to as many-body perturbation theory)
[102,103], i.e., with a perturbative treatment starting from the HF-SCF wavefunction as
the zeroth-order solution and the sum of Fock operators as unperturbed Hamiltonian
[104]. A nearly quantitative treatment of electron-correlation effects in many cases is
finally provided by coupled-cluster (CC) techniques [105–110] which are characterized
by an exponential ansatz for the wavefunction. However, the high accuracy can only be
achieved at significant computational expense, thus rendering the CC schemes less
applicable to larger molecules. To be more specific with respect to the applicability issue,
we note that the computational cost of HF-SCF and DFT formally scales with O(N4)
(though efficient implementations permit an effectively linear scaling for sufficiently large
molecules [111,112]). For the CC methods, on the other hand, the scaling is at least O(N6)
and can be higher. Here, N is a measure for the size of the system and often identified
(imprecisely) with the number of basis functions. Among the approaches not listed in
Figure 6 are those that are known as multi-reference schemes (multi-configurational SCF,
multi-reference configuration-interaction, etc. [113–115]) and which, unlike the HF ansatz,
directly start with several Slater determinants for the representation of the electronic
wavefunction. The computational cost analysis of these methods is less straightforward,
but they are in general, comparable in cost to CC methods for a similar level of accuracy.

In the area of rotational spectroscopy, the choice of an appropriate quantum-chemical
method is more or less dictated by two considerations. First, rotational spectroscopy
typically deals with small to medium-sized molecules. Second, it is also a technique that
provides quite precise spectroscopic parameters. Since useful computational analysis of the
spectra therefore requires quite accurate calculations and the size of the molecules does
not present a serious obstacle to the use of computationally-intensive methods, it seems
that CC methods are a natural choice for this area of application. Accordingly, we will
focus on these methods in the following sections. However, in order to put the CC
methods in the proper context, we will start with a brief recapitulation of HF as well as MP
perturbation theory, before an extensive discussion of the currently available CC schemes
is given.

4.2. Quantum-chemical methods

4.2.1. Hartree–Fock theory

In HF theory [96], the wavefunction for an n-electron atom or molecule is assumed to be
given by a single Slater determinant

�HF ¼
1ffiffiffiffi
n!
p j’1’2 � � � ’nj: ð68Þ

The corresponding energy expectation value, the so-called HF energy, is then

EHF ¼
X
i

hii þ
1

2

X
i,j

hij jjiji ð69Þ

with the one-electron integrals defined by

hpq ¼

Z
d�1 ’

	
pð1Þh’qð1Þ ð70Þ
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and the antisymmetrized two-electron integrals by

h pqjjrsi ¼

Z
d�1

Z
d�2 ’

	
pð1Þ’

	
qð2Þ

1

r12
½’rð1Þ’sð2Þ � ’sð1Þ’rð2Þ�: ð71Þ

The n spin orbitals ’i that are used to set up the Slater determinant in Equation (68) are

determined via the variation principle. This means that the HF orbitals are obtained as

solution of the HF equations

F ’i ¼ 	i’i i ¼ 1, . . . , n ð72Þ

with the 	i as the orbital energies and the Fock operator defined by

F ¼ hþ
X
j

ðJj � Kj Þ: ð73Þ

In Equations (69)–(73), h denotes the usual one-electron part of the Hamiltonian

consisting of the kinetic energy as well as nuclear-electron potential [90]; Jj and Kj are the

Coulomb and exchange operators defined via

Jj’ið1Þ ¼

Z
d�2’

	
j ð2Þ

1

r12
’j ð2Þ’ið1Þ

Kj’ið1Þ ¼

Z
d�2’

	
j ð2Þ

1

r12
’ið2Þ’j ð1Þ, ð74Þ

which account for the mean-field description of the two-electron interactions. The HF

equations (in the basis-set representations they are known as the Roothaan–Hall

equations, see Ref. [96]) can be solved using iterative schemes, typically of the

self-consistent-field (SCF) type.
Spin symmetry is usually exploited for closed-shell systems. Two spin orbitals are then

constructed from each spatial orbital �i, viz.

�i�!�i� and �i� ð75Þ

with � and � the assigned spin functions. The corresponding Slater determinant in this

restricted HF (RHF) ansatz is given by

�RHF ¼
1ffiffiffiffi
n!
p j�1� �1� �2� � � ��n=2� �n=2�j ð76Þ

and the corresponding RHF energy by

ERHF ¼
X
i

2hii þ
X
i,j

ð2hij jiji � hij j jiiÞ
ð77Þ

with the integrals now defined for the spatial orbitals

hpq ¼

Z
dr1 �

	
pð1Þh�qð1Þ ð78Þ

and

hpqjrsi ¼

Z
dr1

Z
dr2 �

	
pð1Þ�

	
qð2Þ

1

r12
½�rð1Þ�sð2Þ�: ð79Þ
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The spatial orbitals are now determined by

F�i ¼ 	i�i i ¼ 1, . . . , n=2 ð80Þ

with the Fock operator for the RHF case defined by

F ¼ hþ
Xn=2
j

ð2Jj � Kj Þ ð81Þ

and the Coulomb and exchange operators now defined for spatial instead of spin orbitals.
A corresponding treatment for open-shell systems requires, unlike for the closed-shell

case, different spatial orbitals for the spin orbitals with � and � spin, namely ��i and ��i ,
and is referred to as unrestricted HF (UHF) [116]. The additional restriction to keep the
spatial parts identical leads to the so-called restricted open-shell HF (ROHF) [96]
approach.

4.2.2. Møller–Plesset perturbation theory

The simplest possibility to account for electron-correlation effects in quantum-chemical
calculations is to apply perturbation theory starting from the HF wavefunction as
zeroth-order approximation [102,103]. For this purpose, the Hamiltonian is divided in an
unperturbed and perturbed part

H ¼ H0 þH 0; ð82Þ

with the unperturbed part given as the corresponding sum of the Fock operators. This
choice is usually referred to as the Møller–Plesset ansatz [104] and the corresponding
perturbation treatment is known as Møller–Plesset (MP) perturbation theory, which
can be viewed as a special case of the more general many-body perturbation theory
(MBPT) [102]. It is straightforward to show that the HF wavefunction as well as all excited
determinants �a

i , �ab
ij , . . . obtained by replacing one, two, . . . occupied by virtual orbitals

are eigenfunctions of H0. However, the HF energy is only recovered in first-order
perturbation theory. The first contribution to the correlation energy is then obtained
in second-order (MP2 or MBPT(2)) and given as

DEðMP2Þ ¼
1

4

X
i,j

X
a,b

jhabjjijij2

	i þ 	j � 	a � 	b
: ð83Þ

In Equation (83), the sum runs over occupied (indices i, j) and virtual spin orbitals (indices
a, b) and the expression involves the antisymmetrized two-electron integrals defined
in Equation (71) as well as the (for perturbation theory characteristic) orbital-energy
denominator. The computational cost of O(N5) for MP2 stems from the integral
transformation required to obtain the two-electron integrals in Equation (71) in the MO
representation; the energy evaluation itself scales with N4.

Higher orders of MP perturbation theory have also been formulated and implemented
[117–120], but they are nowadays much less common. The reasons are that the
perturbation expansion can be hampered by divergences [121] which render higher-order
results unreliable and that at best MP perturbation theory provides rather slow
convergence to the exact solution of the electron-correlation problem, i.e., the so-called
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full-configuration interaction (FCI) limit [122]. Most important, there are more efficient

treatments for the electron-correlation problem now available (see, for example, next

section).

4.2.3. Coupled-cluster theory

CC theory [123,124] provides a treatment of electron correlation starting from a single

Slater determinant (zeroth-order) reference function. The latter is most often (though not

necessarily) obtained using Hartree–Fock (HF) theory and will be denoted in the following

as j0i. The reference determinant is composed of n occupied spin orbitals (indices i, j, . . .).

Solution of the HF-SCF equations (in a basis-set representation, i.e., the Roothaan–Hall

equations) also yield unoccupied (virtual) spin orbitals (indices a, b, . . .). By promoting

electrons from the occupied to virtual orbitals, so-called singly, doubly, etc. excited

determinants with respect to j0i are generated.
CC theory starts with the following ansatz for the wavefunction

j�i ¼ expðT Þj0i ð84Þ

with the cluster operator T defined as

T � T1 þ T2 þ T3 þ � � � þ TN, ð85Þ

with

Tm �
1

m!2

X
i,j,k,���

X
a,b,c,���

tabc���ijk��� a
þibþj � � � : ð86Þ

The definition above makes use of the notation of second quantization [92], where pþ and

p denote creation and annihilation operators, respectively. The exponential of the T

operator in Equation (84) is defined by the expansion

expðT Þ ¼ 1þ Tþ
1

2!
T 2 þ

1

3!
T 3 þ � � � : ð87Þ

The CC ansatz for the wavefunction so far involves no approximation; in fact, the ansatz

in Equation (84) is equivalent to full configuration-interaction (FCI) [125]. The cluster

expansion of the wavefunction is simply an alternative way to parameterize the

wavefunction j�i in the complete set of Slater determinants that can be constructed

from the given spin orbitals.
The unknown parameters in the given ansatz for the wavefunction are the weighting

factors tai , t
ab
ij , . . . in the cluster operator. These quantities, typically termed amplitudes,

need to be determined to obtain the actual wavefunction and energy of the system. While

one could appeal to the variation principle, this approach is quite cumbersome in the

present context and fraught with subtleties; it is thus not often used. The preferred

approach is to use projection techniques. In the first step, we insert the ansatz for j�i in

Equation (84) into the electronic Schrödinger equation

H expðT Þj0i ¼ E expðT Þj0i ð88Þ
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and then multiply both sides of Equation (88) (from the left) by exp(�T) (this step is not

necessary, but allows one to use nested commutator techniques or, alternatively,

diagrammatic methods)

expð�T ÞH expðT Þj0i ¼ Ej0i: ð89Þ

Left-projection onto the reference determinant j0i immediately gives an equation for the

energy in terms of the unknown amplitudes, viz.

E ¼ h0j expð�T ÞH expðT Þj0i: ð90Þ

The amplitudes are then determined from the inhomogeneous nonlinear equations

obtained by projecting Equation (89) from the left by the excited determinants �p (which

are orthogonal to j0i),

0 ¼ h�pj expð�T ÞH expðT Þj0i, ð91Þ

which, despite the notational simplicity, represent quite complicated equations that are

best solved using sophisticated iterative subspace techniques (see, for example, Ref. [126]).
Nevertheless, with the theory given so far, the CC ansatz does not provide a practical

scheme for solving the electronic Schrödinger equation, as the calculations would be at

least as expensive as corresponding FCI calculations. To obtain a computationally feasible

scheme, it is essential to introduce approximations that reduce the computational effort

significantly without sacrificing too much in terms of accuracy. The first (and most

obvious) choice is to restrict the excitations in the cluster operator as well as in the

projection space to certain excitation classes. Since the HF determinant has non-zero

Hamiltonian matrix elements only with double excitations, the most basic choice would be

to enforce the restriction T¼T2, and to restrict the space of �p to just double excitations,

thereby giving a reasonably well-behaved system of equations. This is the so-called CC

doubles (CCD) approach [127,128] and has a computational cost of the order of N6.

However, since the double excitations interact also with the single, triple, and quadruple

excitations (and these, in turn, interact with higher levels of excitation in such a way that

no sub-block of the Hamiltonian can be decoupled from the remainder of the matrix),

CCD is subject to improvement and this is done by including other excitations in the T

operator and the corresponding excited determinants into the projection space. Table 2

summarizes the most common CC models obtained in this way together with the

corresponding computational scaling properties.

Table 2. Overview of CC models obtained by restricting the cluster operator T to certain excitation
classes.

Approximation Definition of T Computational cost Reference

CCD T¼T2 N6 [127,128]
CCSD T¼T1þT2 N6 [129]
CCSDT T¼T1þT2þT3 N8 [130,131]
CCSDTQ T¼T1þT2þT3þT4 N10 [132,133]
CCSDTQP T¼T1þT2þT3þT4þT5 N12 [134]
. . .
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Currently, the most common choice is the singles and doubles (CCSD) scheme [129]
with single and double excitations included in T. The other schemes, i.e., in particular CC
singles, doubles, triples (CCSDT) [130,131] and CC singles, doubles, triples, quadruples
(CCSDTQ) [132–134] are also in use, but their computational costs (O(N8) and O(N10),
respectively) are daunting, even with modern computational resources.

Systematic investigations of the accuracy of CC calculations revealed the importance
of triple excitations [135], as CCSD results do not provide the accuracy desired in many
applications, and in fact can be sometimes even less satisfactory than those from MP2
theory. This led to considerable effort into how one might best include triple excitations
in an economical manner (without performing a full and costly CCSDT calculation).
In passing, we note that a similar challenge exists also with respect to the inclusion of
quadruple and higher excitations.

Two options exist for including higher excitations at costs that are lower than those
of the corresponding ‘‘full’’ CC method. The first is to approximate the equations for the
triple excitation amplitudes such that the associated computational cost is reduced to the
order of N7 and, as it turns out, that the storage of the triple excitation amplitudes is no
longer required. This idea has been used in the CCSDT-n (n¼ 1a, 1b, 2, and 3) schemes
[130,136,137] as well as the CC3 approximation [138]. Perturbation theory arguments are
used to decide which terms should be included and then all N8 terms are skipped,
irrespective of their importance from the viewpoint of perturbation theory. For quadruple
excitations, a similar CCSDTQ-1 scheme [139] has been suggested that has a scaling of N9

instead of N10 and also does not require storage of the (numerous) quadruple excitation
amplitudes.

However, application of the CCSDT-n methods is still costly due to the iterative N7

steps required to solve the amplitude equations. In this way, such calculations are an order
of magnitude more expensive than CCSD and much less applicable. For this reason,
non-iterative treatment of higher excitations based on perturbation theory attracted much
interest [140–146], which ultimately led to the development of the well-known CCSD(T)
method [141]. The basic idea is simply to augment a CCSD calculation with a perturbative
estimate for triple excitations. To ensure high accuracy, however, it is essential to use
converged amplitudes for the perturbative estimate and also to include higher-order
contributions in terms of perturbation theory (a derivation of the CCSD(T) scheme
somewhat more natural than its original rationale can be found in Ref. [147]). More
recently, a similar approach has also been suggested for quadruple excitations and termed
CCSDT(Q) [144–146]. Beside the high accuracy, CCSD(T) performs decidedly better than
CCSDT-n methods and sometimes even outperforms full CCSDT. This is due to the fact
that CCSD(T) tends to slightly overshoot the CCSDT energy, and therefore is often closer
to the CCSDTQ energy (the quadruples contribution is usually negative) than it is to
CCSDT. The attractive feature of CCSD(T) is that it involves only iterative N6 and
non-iterative N7 steps and is therefore feasible even for medium-sized systems. Recent
examples, especially those employing parallel implementations of the CCSD(T) scheme
[148,149], attest to the current range of applicability of this method.

4.3. Basis-set approximation

The accuracy of quantum-chemical calculations is compromised not only by incomplete
treatment of the electron-correlation problem but also by the use of finite basis sets for the
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representation of the molecular orbitals. The usual choice of basis functions are contracted
Gaussian functions of the form [95]

��ðrÞ ¼ Nðx� X�Þ
n
ð y� Y�Þ

l
ðz� Z�Þ

m
X
p

dp expð��pðr� R�Þ
2
Þ

ð92Þ

with exponents �p, the contraction coefficients dp, the normalization constant N, and the
center of the basis function denoted by R�. The angular part of the basis function is here
given in Cartesian from, i.e., via the polynomials (x�X�)

n, (y�Y�)
l, and (z�Z�)

m with the

sum, L� (nþ lþm), defining the ‘‘angular momentum’’ of the basis function (s functions
are thus represented by L¼ 0, p functions by L¼ 1, d functions by L¼ 2, etc.). Note,
however, that most of the calculations actually use appropriate linear combinations of

these Cartesian Gaussians, usually referred to as real solid-harmonic Gaussians, in order
to allow a more mathematically consistent representation of the angular part [150]. As the
centers of the basis functions usually coincide with the nuclear positions, it is clear that this
choice of basis functions bears some resemblance with the actual atomic orbitals, as they

are well-known from the hydrogen atom. However the chosen Gaussian functions, unlike
the rather similar Slater functions [95], do not fulfill the cusp condition at the nuclear
position. Nevertheless, their choice is advantageous, as the required one- and two-electron

integrals over the basis functions, i.e., h��j�
i, h�
jhj�
i, h���
j1/r12j����i, etc., can be
efficiently and analytically calculated [151–154], while the same is not necessarily true
for the otherwise better suited Slater functions. To compensate for the shortcomings of

Gaussians, the common choices are most often fixed linear combinations of Gaussian
functions, i.e., the so-called contracted Gaussian functions, and in this way an improved
description is achieved. While contraction of a Gaussian basis set increases the cost
of integral evaluation relative to an uncontracted basis, the number of MOs – which

primarily governs the total amount of time required for the correlated calculation – is only
dependent on the number of contracted functions and not on the contraction level.

Quantum-chemical calculations typically use predefined basis sets either available
in the literature or in the basis-set library of the program package at hand. Those

have been obtained by fitting Gaussian functions to the corresponding Slater functions
(e.g., for example, the STO-nG sets by Pople and co-workers [155]), by energy
optimizations (see, for example, the Dunning–Huzinaga [156–158] and the Karlsruhe
basis sets [159–162]) or by some simple, though meaningful schemes, as in the case of the

even-tempered basis sets [163,164]. Concerning the common choices (see Table 3),
a minimal basis denotes a basis set which consists of one contracted function per AO for
each atom, n-tuple zeta basis sets (e.g., double zeta (DZ), triple zeta (TZ), etc.) refer to sets

which use n functions per AO, and split-valence (SV) sets are those with one basis function
per inner-shell AO but multiple functions for each valence AO. Furthermore, use of
polarization functions, i.e., functions with higher angular momentum, is compulsory for

achieving reasonable accuracy. This means, for example, that a basis set for hydrogen
contains p functions (note that d functions as well as functions with even higher angular
momentum are possible and also used), and basis sets for carbon include d functions,
etc. The use of polarization functions is often denoted by a ‘‘P’’, thus DZP refers to a

double-zeta basis augmented by polarization functions, TZ2P to a triple-zeta basis
augmented by two sets of polarization functions, etc. A rather exhaustive list of available
basis sets can be found, for example, on the EMSL basis set exchange web page [165], from
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which the corresponding sets can also be downloaded. Furthermore, there are several

reviews which provide in-depth discussions concerning the ‘‘art’’ of choosing proper basis

sets [166–168].
The error associated with the choice of a finite basis is usually termed basis-set error

and is often of a magnitude similar to the correlation energy itself. Clearly, an obvious

solution would be the use of sufficiently large basis sets, but it has been amply

demonstrated that convergence of correlated calculations to the basis-set limit is quite

slow. Obtaining converged results (with respect to basis set) is a challenging and in many

cases impossible task [169,170]. Nevertheless, reliable results can be obtained by using

some standard choices of basis sets in electron-correlated calculations.
A further important issue is that the use of only one basis set does not tell very much

about the accuracy of a calculation. Thus, it is essential to perform calculations with

different basis sets in order to monitor convergence, to estimate remaining errors, and to

extrapolate the results to the basis-set limit. However, such a series of calculations are best

performed with basis sets taken from a hierarchy of basis sets especially designed for such

a task. The most popular choices in this regard are Dunning’s correlation-consistent basis

sets [171]. For frozen-core (fc) calculations (i.e., calculations in which only the valence

electrons are correlated) the standard cc-pVXZ sets with X¼D, T, Q, 5, and 6 [171–176]

are recommended, while for all-electron calculations the corresponding core-valence sets

[177–179], cc-p(w)CVXZ with X¼D, T, Q, 5, and 6, are more appropriate. For properties,

the choice of basis set depends on the characteristic of the property under consideration.

For the calculation of electric properties, for example, it is important to add diffuse

functions (which leads to the so-called aug-cc-pVXZ sets [174,180–182]), while properties

that sample the electron density closer to the nucleus, such as the electric-field gradient,

require the use of the core-valence sets [177–179]. Table 4 gives a summary of the size of

the corresponding sets for first and second-row elements.
Based on calculations using Dunning’s correlation-consistent basis sets, it is possible

to estimate the basis-set limit using extrapolation techniques. For the HF energy, the

following empirical formula [183]

E1HF-SCF ¼ EX
HF-SCF þ a exp ð�bX Þ ð93Þ

Table 3. Characterization of some standard basis sets in terms of number and type of involved basis
functions.

Basis set Hydrogen First-row elements Second-row elements

Minimal basis (e.g., STO-3G) 1s 2s1p 3s2p
Double zeta (DZ) 2s 4s2p 6s4p
Triple zeta (TZ) 3s 6s3p 9s6p
. . .
Double-zetaþ polarization (DZP) 2s1p 4s2p1d 6s4p1d
Triple-zetaþ polarization (TZP) 3s1p 6s3p1d 9s6p1d
. . .
Split valence (SV) 2s 3s2p 4s3p
Split-valenceþ polarization (SVP) 2s1p 3s2p1d 4s3p1d
. . .
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is used ubiquitously, and three calculations with different X are required to obtain the

parameters a and b as well as the extrapolated energy E1HF-SCF. For the electron-correlation

contribution, however, the most common extrapolation is that based on [169]

DE1corr ¼ DEcorrðXÞ �
c

X3
ð94Þ

which, to some degree, is justified on the basis of the atomic partial-wave expansion

and requires only two calculations to get the parameter c and the basis-set limit for the

correlation energy DE1corr. These admittedly empirical extrapolation schemes work quite

well and are commonly used in high-accuracy quantum-chemical calculations [184–189].

There is also some evidence that these extrapolation schemes can be applied in property

calculations [190,191]. In particular, it is there shown that a composite scheme in which

the various contributions are evaluated separately at the highest possible level and then

summed up, e.g.,

Etot ¼ EHF þ DECCSDðTÞ þ DECCSDT þ DECCSDTQ þ DEcore þ � � � , ð95Þ

is suitable to account in an efficient manner for basis-set truncation as well as higher

excitations and core-correlation effects.

Table 4. Size of the various correlation-consistent basis sets for hydrogen, first-row elements
(B–Ne), and second-row elements (Al–Ar). Given are the number of contracted functions for each
angular momentum and in parentheses the total number of basis functions per atom.

Basis Hydrogen First-row elements Second-row elements

(a) cc-pVXZ sets, X¼D, T, Q, 5, 6
cc-pVDZ 2s1p (5) 3s2p1d (14) 4s3p1d (18)
cc-pVTZ 3s2p1d (14) 4s3p2d1f (30) 5s4p2d1f (34)
cc-pVQZ 4s3p2d1f (30) 5s4p3d2f1g (55) 6s5p3d2f1g (59)
cc-pV5Z 5s4p3d2f1g (55) 6s5p4d3f2g1h (91) 7s6p4d3f2g1h (95)
cc-pV6Z 6s5p4d3f2g1h (91) 7s6p5d4f3g2h1i (140) 8s7p5d4f3g2h1i (144)

(b) cc-pCVXZ, X¼D, T, Q, 5, 6
cc-pCVDZ 2s1p (5) 4s3p1d (18) 5s4p2d (27)
cc-pCVTZ 3s2p1d (14) 6s5p3d1f (43) 7s6p4d2f (59)
cc-pCVQZ 4s3p2d1f (30) 8s7p5d3f1g (84) 9s8p6d4f2g (109)
cc-pCV5Z 5s4p3d2f1g (55) 10s9p7d5f3g1h (145) 11s10p8d6f4g2h (181)
cc-pCV6Z 6s5p4d3f2g1h (91) 12s11p9d7f5g3h1i (230) —

(c) aug-cc-pVXZ, X¼D, T, Q, 5, 6
aug-cc-pVDZ 3s2p (9) 4s3p2d (23) 5s4p2d (27)
aug-cc-pVTZ 4s3p2d (23) 5s4p3d2f (46) 6s5p3d2f (50)
aug-cc-pVQZ 5s4p3d2f (46) 6s5p4d3f2g (80) 7s6p4d3f2g (84)
aug-cc-pV5Z 6s5p4d3f2g (80) 7s6p5f4f3g2h(127) 8s7p5d4f3g2h (131)
aug-cc-pV6Z 7s6p5d4f3g2h (127) 8s7p6d5f4g3h2i (189) —

(d) aug-cc-pCVXZ, X¼D, T, Q, 5, 6
aug-cc-pCVDZ 3s2p (9) 5s4p2d (27) 6s5p3d (36)
aug-cc-pCVTZ 4s3p2d (23) 7s6p4d2f (59) 8s7p5d3f (75)
aug-cc-pCVQZ 5s4p3d2f (46) 9s8p6d4f2g (109) 10s9p7d5f2g1h (134)
aug-cc-pCV5Z 6s5p4d3f2g (80) 11s10p8d6f4g2h (181) 12s11p9d7f5g2h1i (217)
aug-cc-pCV6Z 7s6p5d4f3g2h (127) 13s12p10d8f6g4h2i (279) —
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There are clearly other useful basis sets available in the literature [159–162,193–199],
but unfortunately most of them lack the embedding in a well defined hierarchy. Most
promising in the future might be possibly the use of atomic natural orbital (ANO) sets
by Almlöf and Taylor [195,196] for which it seems to be possible to construct similar
well-defined sequences of sets.

In passing we also note that a promising strategy to overcome basis-set problems are
the so-called explicitly correlated approaches (i.e., the R12 and F12 schemes [200–204]),
but these methods are still experimental and not yet available for routine calculations.

4.4. Molecular properties in terms of energy derivatives

The key to the evaluation of many molecular properties are derivatives of the energy [205].
Let us start with the equilibrium geometry of a molecule which, within the Born–
Oppenheimer approximation, is defined as a minimum on the corresponding potential
energy surface. The necessary mathematical condition for this is

dE

dX�
¼ 0 ð96Þ

i.e., that the gradient of the energy with respect to all nuclear coordinates X� vanishes.
Efficient search algorithms (schemes for geometry optimizations) [206] typically require
in each step of the iterative procedure the evaluation of these gradients. The Newton–
Raphson scheme also requires the second derivatives of the energy, i.e., the so-called
Hessian matrix, while the most often used quasi-Newton algorithms [207] work with
approximate Hessians that are initially estimated by some inexpensive means and then
updated in each step based on the available energy and gradient information [206].

Moving further to harmonic, cubic, quartic, . . . force fields, we note that these
quantities can be used to characterize the potential energy surface at a given point and that
they are given via the corresponding second, third, fourth, . . . derivatives of the energy
with respect to the nuclear coordinates,

��� ¼
d 2E

dX�dX�
ð97Þ

���� ¼
d 3E

dX�dX�dX�
ð98Þ

� � �

The harmonic (or quadratic) force field ��� is required for the determination of harmonic
frequencies, while the cubic force field ���� is needed in addition to account for vibrational
effects on properties (see, for example, Section 3.2). Elements of the quartic force
field ����� are needed to obtain anharmonic corrections to vibrational frequencies at the
simplest level of approximation [36].

First-order properties generally can be obtained by computing first derivatives of the
energy. The dipole moment, for example, is thus given as the (by convention negative)
derivative of the energy with respect to the components of an external electric field:

�� ¼ �
dE

d	�

� �
	¼0

: ð99Þ
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The derivative with respect to the electric-field gradient provides the quadrupole moment
of a molecule and that with respect to a nuclear quadrupole moment leads to the
electric-field gradient at the corresponding nucleus.

Higher-order properties are determined in an analogous manner via higher derivatives
of the energies. The polarizability tensor is, for example, computed as the second
derivative of the energy with respect to the electric field,

��� ¼ �
d 2E

d	�d	�

� �
	¼0

: ð100Þ

4.5. Analytic derivatives of the energy

The required derivatives of the energy with respect to the nuclear coordinates or external
perturbation parameters such as, for example, the components of an electric field can be
computed using either numerical or analytic techniques.

Within the numerical approach, the derivatives are computed using finite (and usually
central) differences, and, for example, the first derivative of the energy with respect to x at
the point x0 can be obtained via

dE

dx

� �
x¼x0



Eðx0 þ DxÞ � Eðx0 � DxÞ

2Dx
ð101Þ

with Dx as a small, but finite displacement. The computation of energy derivatives using
such an approach is clearly of limited accuracy, considering the contamination due to
higher derivatives for the right-hand side of Equation (101) in the case of too large values
for Dx and the limited precision of actual computations in the case of too small values
for Dx (although more sophisticated numerical differentiation formulas can be used at the
price of additional energy calculations). The accuracy issue is not too severe in the case
of first derivatives, but becomes a serious problem if second or higher derivatives are
determined in this way from energies. The computational cost of the numerical
differentiation approach is, for gradients, two times that of a simple energy calculation
for each perturbation. Therefore, in a geometry optimization (with 3Natoms coordinates)
the total cost is about 6Natoms that for a single energy calculation. It is clear that numerical
schemes thus quickly become expensive and render the evaluation of gradients (as well as
of higher derivatives) for larger molecules costly.

Within the analytic approach, one first derives an expression for the desired derivatives
of the energy and then uses this for a direct evaluation of the energy derivatives [208].
The analytic approach has no accuracy problems and, as will be discussed, is also
computationally advantageous with the cost for all gradients comparable to that of a
single energy calculation. Furthermore, analytic differentiation facilitates the treatment
of magnetic perturbations which would necessitate the use of complex wavefunction
parameters in the case of finite-field calculations. Due to its close connection to response
theory, it also can be used for frequency-dependent properties (see, for example,
Ref. [209]). As a possible disadvantage, one might consider that additional theory and
programming is required. However, this needs to be done only once. As soon as a
computer code is available, this disadvantage becomes irrelevant. Table 5 summarizes the
advantages and disadvantages of both numerical and analytic differentiation schemes.

304 C. Puzzarini et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



From the discussion to this point, it is clear that the analytic approach to energy

derivatives is the preferred way when they are available. The current standard in quantum

chemistry thus is to compute, whenever possible, the needed energy derivatives using

analytic techniques and to rely on finite-difference schemes only when analytic techniques

are not available.
In the derivation of suitable expressions for the analytic evaluation of energy

derivatives, some care is required to ensure computational efficiency. This means that the

overall scaling of the computational cost with the size of the system should be the same

as for the original determination of energy and wavefunction parameters (usually easy to

fulfill) and that the scaling of the cost with the number of perturbations (e.g., the number

of nuclear coordinates in the case of geometrical derivatives) should be as low as possible

(the challenging part). Straightforward differentiation always leads to contributions

involving the highest possible derivatives of the wavefunction parameters, e.g., the

first derivative of the wavefunction is needed for the gradient, the second derivatives of the

wavefunction for second derivatives, etc. This is clearly not desirable. The reason is simply

that the determination of derivatives of the wavefunction parameters is as costly as the

determination of the original unperturbed parameters. On the other hand, it is important

to realize that the same argument does not apply for the derivatives of the one- and

two-electron integrals. Though their evaluation (in particular for the higher derivatives)

Figure 7. Energy gradients in variational methods.

Table 5. Comparison of the advantages and disadvantages of
numerical and analytic approaches for the calculation of energy
derivatives.

Numerical Analytic

Implementation Easy Difficult
Efficiency Low High
Precision Low to moderate High
Imaginary perturbations Complex � Yes
Frequency dependence No Yes
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might be technically challenging [210,211], the associated computational costs are not the
bottleneck in a derivative calculation. As an example, consider the two-electron
integral h���� j�
��i over the four basis functions ��, �
, ��, and �� which are centered
(and depend) on the corresponding positions R�, R
, R�, and R� that usually coincide
with the nuclear positions. It is then clear that the corresponding derivatives with respect
to the nuclear coordinates are only non-zero when they are taken with respect to one of the
centers involved. That means that there are at most a total of twelve non-vanishing
derivatives irrespective of the size of the system.

With respect to the derivatives of the wavefunction parameters, a lot of effort has been
devoted to eliminate them as much as possible from the corresponding expression for the
energy derivatives and to ensure in this way computational efficiency [212–218]. It is rather
straightforward to demonstrate that the derivatives of parameters that are determined in
a variational manner are not needed for the evaluation of the corresponding energy
gradient (see Figure 7) and that, in a more general sense, a (2nþ 1) rule [217,218] holds
which states that the n-th derivatives of the wavefunction parameters suffice for the
evaluation of the (2nþ 1)-th derivatives of the energy. The situation is somewhat more
complicated with respect to parameters that are obtained in a non-variational manner,
as it is, for example, the case for the CC amplitudes. Here, the appearance of the perturbed
parameters in the gradient expression can be avoided via the method of undetermined
multipliers (or Lagrange multipliers) with the equations for the determination of the
non-variational parameters as a constraint (see Figure 8; a possible alternative would be
the use of the interchange theorem of Dalgarno and Stewart [216]). In this way, an energy
functional ~E is introduced which can be made stationary with respect to both the
wavefunction parameters and the Lagrange multipliers. Differentiation of ~E then provides

Figure 8. Energy gradients in non-variational methods.
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the desired derivatives of E and is carried out using the (2nþ 1) and (2nþ 2) rules for the

wavefunction parameters and the Lagrange multipliers, respectively [212,217,218]. The

latter states that knowledge of the n-th derivatives of the Lagrange multipliers is adequate

for the calculation of the (2nþ 2)-th derivative of E.
In HF theory, these concepts are applied in the following manner. The starting point

is the suitably defined energy functional (for the RHF case)

~EHF ¼ EHF � 2
X
i,j

"jiðhij j i � �ijÞ

¼
X
i

2hii þ
X
i,j

ð2hij jiji � hij j ji iÞ � 2
X
i,j

"jiðhij ji � �ijÞ ð102Þ

which is obtained by augmenting the RHF energy (see Equation (77)) by the

orthonormality conditions multiplied with the Lagrange multipliers 	ij. No further

condition needs to be invoked for the HF orbitals (i.e., the MO coefficients), which are

determined by minimization of Equation (102). For the first derivative, one then obtains

using the (2nþ 1) and (2nþ 2) rules

dEHF

dx
¼
X
i

2hxii þ
X
i,j

ð2hij jijix � hij j jiixÞ �
X
i,j

2"jiS
x
ij: ð103Þ

In Equation (103), the integral derivatives hxpq, S
x
pq, and h pqjrsi

x are defined such that

they involve (in accordance with the (2nþ 1) rule) only the AO integral-derivative

contributions, i.e.,

hxpq ¼
X
�,


c	�p
@h�

@x

c
q ð104Þ

Sx
pq ¼

X
�,


c	�p
@S�

@x

c
q ð105Þ

and

hpqjrsix ¼
X
�,
,�,�

c	�pc
	
�q

@h��j
�i

@x
c
rc�s: ð106Þ

Equation (103) is usually recast in an AO formalism [208]

dEHF

dx
¼
X
�,


D�

@h�

@x
þ
1

2

X
�,
,�,�

D�
D��
@h��j
�i

@x
�
1

2

@h��j�
i

@x

� �
þ
X
�,


I�

@S�

@x

, ð107Þ

with the AO density and AO energy-weighted density matrices given by

D�
 ¼
X
i

2c	�ic
i ð108Þ

and

I�
 ¼ �
X
i

2c	�i"ic
i: ð109Þ
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A computationally efficient expression for the second derivatives of the HF energy is

obtained by straightforward differentiation of Equation (107) with respect to a second

perturbation y [219]

d2EHF

dxdy
¼
X
�,


D�

@2h�

@x@y

þ
1

2

X
�,
,�,�

D�
D��
@2h��j
�i

@x@y
�
1

2

@2h��j�
i

@x@y

� �
þ
X
�,


I�

@2S�

@x@y

þ
X
�,


@D�


@y

@h�

@x
þ
X
�,�

D��
@h��j
�i

@x
�
1

2

@h��j�
i

@x

� �( )
þ
X
�,


@I�

@y

@S�

@x

ð110Þ

with the perturbed density matrices given by

@D�


@x
¼
X
i

2
@c	�i
@x

c
i þ c	�i
@c
i
@x


 �
ð111Þ

and

@I�

@x
¼ �

X
i

2
@c	�i
@x

"ic
i þ c	�i"i
@c
i
@x


 �
�
X
i,j

2c	�j
@fji
@x

c
i: ð112Þ

The perturbed MO coefficients are usually expanded in terms of the unperturbed MO

coefficients

@c�p
@x
¼
X
q

Ux
qpc�q: ð113Þ

The coefficients Ux
pq are determined either via the differentiated orthonormality condition

and/or solution of the coupled-perturbed HF (CPHF) equations [219,220].
Within CC theory, the concepts of analytic-derivative evaluation are applied as

follows. The energy functional is given by [205,221,222]

~E ¼ Eþ
X
p

�ph�pj expð�T ÞH expðT Þj0i

¼ h0j expð�T ÞH expðT Þj0i þ
X
p

�ph�pj expð�T ÞH expðT Þj0i ð114Þ

with the �p as the corresponding Lagrange multipliers and the CC amplitude equations as

the constraint. It is convenient to introduce the following shorthand notation

~E ¼ h0jð1þ�Þ expð�T ÞH expðT Þj0i ð115Þ

where � is a de-excitation operator [223,224] defined analogously to the cluster operator

of Equations (85),

� � �1 þ�2 þ�3 þ � � � , ð116Þ

with

�m �
1

m!2

X
i,j,k,���

X
a,b,c,���

�ijk���abc���i
þajþb � � � : ð117Þ
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In a second step, the energy functional is made stationary with respect to the wavefunction

parameters as well as the Lagrange multipliers. In the case of CC theory, the corre-

sponding stationary conditions are

d ~E

dtab���ij���

¼ 0�!h0jð1þ�Þðexpð�T ÞH expðT Þ � E Þj�ab���
ij��� i, ¼ 0, ð118Þ

i.e., the so-called � equations, and

d ~E

d�ij���ab���

¼ 0�!CC amplitude equations, see Equation ð91Þ: ð119Þ

Differentiation of the CC energy functional in Equation (115) then yields for the first

derivatives

dE

dx
¼ h0jð1þ�Þ expð�T Þ

dH

dx
expðT Þj0i ð120Þ

and for the second derivatives

d 2E

dx dy
¼ h0jð1þ�Þ expð�T Þ

d 2H

dxdy
expðT Þj0i

þ h0jð1þ�Þ expð�T Þ
dH

dx
expðT Þ,

dT

dy

� �
j0i

þ h0jð1þ�Þ expð�T Þ
dH

dy
expðT Þ,

dT

dx

� �
j0i

þ h0jð1þ�Þ expð�T ÞH expðT Þ,
dT

dx

� �
,
dT

dy

� �
j0i: ð121Þ

An alternative expression for the second derivatives can be also obtained by explicit

differentiation of the gradient expression [225,226]

d 2E

dxdy
¼ h0jð1þ�Þ expð�T Þ

d 2H

dxdy
expðT Þj0i

þ h0j
d�

dy
expð�T Þ

dH

dx
expðT Þj0i

þ h0jð1þ�Þ expð�T Þ
dH

dx
expðT Þ,

dT

dy

� �
j0i: ð122Þ

Unlike the first expression, the latter involves both derivatives of the cluster and �

amplitudes but only for the second perturbation y. The required perturbed amplitudes

dT/dx are determined by solving the perturbed amplitude equations

0 ¼ �p expð�T Þ
dH

dx
expðT Þ

����
����0

� 

þ �p expð�T ÞH expðT Þ,

dT

dx

� �����
����0

� 

ð123Þ

which are obtained by differentiating Equation (91) with respect to perturbation x.

The perturbed � amplitudes appearing in Equation (122) are solutions of the
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perturbed � equations

0 ¼ 0
d�

dy
ðexpð�T ÞH expðT Þ � EÞ

����
�����p

� 


þ 0 ð1þ�Þ expð�T Þ
dH

dy
expðT Þ þ expð�T ÞH expðT Þ,

dT

dy

� �
�
dE

dy

� �����
�����p

� 

ð124Þ

obtained by differentiating the unperturbed � equations in Equation (118) with respect to
the perturbation y. The cost for the solution of the perturbed amplitude and � equations
are roughly the same as that for the solution of the corresponding unperturbed equations.

Whether the first or second expression for analytical second derivatives (Equation
(121) or (122)) is computationally more advantageous depends on the actual perturba-
tions. For properties that correspond to two different classes of perturbation, the second
(asymmetric) approach is probably advantageous. This choice necessitates the solution of
2 Ny perturbed equations instead of Nx and Ny equations for the first (symmetric)
approach. Nx and Ny are here the number of x and y perturbations. For example, and in
the context of this review, the determination of the spin–rotation tensor requires solution
of 6 perturbed amplitude equations instead of 3þ 3Natoms. The symmetric approach is
preferred if x and y belong to the same class of perturbation, only Nx equations need to be
solved instead of the 2Nx for the asymmetric approach. An example is the analytic
evaluation of harmonic force fields, for which the symmetric approach requires the
solution of 3Natoms perturbed equations.

The discussion has so far focused on the CC amplitudes as wavefunction parameters
and ignored the dependence of the molecular orbitals on the perturbation in the context of
CC theory. The equations given at this point are valid for so-called orbital-unrelaxed
property calculations [227,228] in which orbital-relaxation effects are treated via the single
excitations in the cluster operator. This approach can be used for electric properties
[227,228] and is the appropriate choice in CC response theory [229]. However, for the
calculation of geometrical and magnetic properties with perturbation-dependent basis
functions it is mandatory to include the dependence of the orbitals. This can be done [205] by
augmenting the energy functional in Equation (115) by additional constraints. If the CC
calculation is performed with the HF-SCF determinant as reference, the Brillouin condition

fai ¼ 0 ð125Þ

(fai denoting the elements of the virtual-occupied block of the spin–orbital Fock matrix)
and the orthonormality conditions for the orbitals

Spq � �pq ¼ 0 ð126Þ

(with Spq as the corresponding overlap integral)

Spq ¼ h’pj’qi ð127Þ

lead to the following CC energy functional [205]

~E ¼ h0jð1þ�Þ expð�T ÞH expðT Þj0i þ
X
a

X
i

Zaifai þ
X
p,q

IpqðSpq � �pqÞ ð128Þ

with Zai and Ipq as the additional Lagrange multipliers.

310 C. Puzzarini et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



The corresponding gradient expression is then given by

dE

dx
¼ h0jð1þ�Þ expð�T ÞHx expðT Þj0i þ

X
a

X
i

Zaif
ðxÞ
ai þ

X
p,q

IpqS
x
pq: ð129Þ

In the derivation of this expression, we have exploited the (2nþ 1) and (2nþ 2) rules
which means that Hx is the perturbed Hamiltonian in second quantization constructed
from the derivative integrals hxpq and h pqkrsix which do not involve contributions due to
the derivatives of the MO coefficients. In the same way, the derivative of the Fock matrix
f ðxÞpq is defined as

f ðxÞpq ¼ hxpq þ
X
m

h pmjjqmix ð130Þ

and in this way ignores derivative contributions of the MO coefficients. While the form
of the � equations has been already given (see Equation (118)), the new Lagrange
multipliers Zai and Ipq are obtained by making ~E stationary with respect to orbital

rotations. Parametrization of these rotations via

’ 0p ¼
X
q

’qUqp ð131Þ

leads to the stationary conditions

@ ~E

@Uai
þ
@ ~E

@Uia
¼ 0�!Zai ð132Þ

which are the the so-called Z-vector equations [215] for the multipliers Zai, while the other
stationary conditions

@ ~E

@Uij
¼ 0�! Iij

@ ~E

@Uai
�
@ ~E

@Uia
¼ 0�! Iai, Iia

@ ~E

@Uab
¼ 0�! Iab ð133Þ

provide expressions for the quantity Ipq (for detailed expressions, see here Ref. [230]).
The usual procedure is to rewrite the gradient expression in a density-matrix

representation

dE

dx
¼
X
p,q

Dpqf
ðxÞ
pq þ

X
p,q,r,s

�pqrsh pqjjrsi
x þ

X
p,q

IpqS
x
pq ð134Þ

where the one-particle density matrix Dpq contains the one-electron part of the original
first term (see Equation (128)) as well as the ‘‘Z-vector’’ contribution. Dpq is often referred
to as a relaxed (or effective) density matrix in contrast to the reduced density matrix which
just consists of the first term. The second term involves the two-particle density matrix
�pqrs and is due to the two-electron part of the first term of Equation (128). The Lagrange
multipliers Ipq on the other hand can be interpreted as the elements of a generalized
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energy-weighted density matrix; the magnitude of these multipliers is related to the

(in)sensitivity of the energy with respect to orbital rotations.
For computational purposes, it is advantageous to recast Equation (134) in the AO

representation

dE

dx
¼
X
�,


D�

@h�

@x
þ
X
�,�

DSCF
��

@h��jj
�i

@x

( )
þ
X
�,
,�,�

���
�
@h��jj
�i

@x
þ
X
�,


I�

@S�

@x

ð135Þ

where the corresponding AO density matrices D�
, I�
, and ��
�� are obtained by

straightforward ‘‘back transformation’’ from the MO to the AO representation.
The same can be also done for the second derivatives. Within the symmetric approach

one then obtains

d 2E

dxdy
¼
X
�,


D�

@2h�

@x@y

þ
X
�,�

DSCF
��

@2h��jj
�i

@x@y

( )
þ
X
�,
,�,�

���
�
@2h��jj
�i

@x@y
þ
X
�,


I�

@2S�

@x@y

þ
X
�,


@D�


@y

� �½1,0� @h�

@x
þ
X
�,�

DSCF
��

@h�jj
�i

@x

( )
þ
X
�,
,�,�

@���
�
@y

� �½1,0�@h��jj
�i
@x

þ
X
�,


@D�


@x

� �½1,0� @h�

@y
þ
X
�,�

DSCF
��

@h�jj
�i

@y

( )
þ
X
�,
,�,�

@���
�
@x

� �½1,0�@h��jj
�i
@y

þ
X
�,


@2D�


@x@y

� �½1,0�
h�
 þ

X
�,�

DSCF
�� h�jj
�i

( )
þ
X
�,
,�,�

@2���
�
@x@y

� �½1,0�
h��jj
�i

þ
X
�,


D�


X
�,�

@DSCF
��

@x

 !
@h��jj
�i

@y
þ
X
�,


D�


X
�,�

@DSCF
��

@y

 !
@h��jj
�i

@x

þ
X
�,


@D�


@x

� �½1,0�X
�,�

@DSCF
��

@y

 !
h��jj
�i þ

X
�,


@D�


@y

� �½1,0�X
�,�

@DSCF
��

@x

 !
h��jj
�i

ð136Þ

where the index ‘‘[1, 0]’’ indicates that all derivatives of the density matrices are computed

according to the (2nþ 1) and (2nþ 2) rules and thus exclude all second derivatives of the

wavefunction parameters and all first and second derivatives of the Lagrange multipliers.

For the asymmetric approach, the corresponding expression is [231]

d 2E

dxdy
¼
X
�,


D�

@2h�

@x@y

þ
X
�,�

DSCF
��

@2h��jj
�i

@x@y

( )
þ
X
�,
,�,�

���
�
@2h��jj
�i

@x@y
þ
X
�,


I�

@2S�

@x@y

þ
X
�,


@D�


@y

@h�

@x
þ
X
�,�

DSCF
��

@h�jj
�i

@x

( )
þ
X
�,
,�,�

@���
�
@y

@h��jj
�i

@x
þ
X
�,


@I�

@y

@S�

@x

þ
X
�,


D�


X
�,�

@DSCF
��

@y

@h��jj
�i

@x
: ð137Þ

Note that, unlike for the symmetric approach, in the asymmetric approach the full

derivatives of the density matrices need to be evaluated.
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A flowchart for the computation of analytic gradients and second derivatives is given
in Figure 9. For a gradient calculation, the usual steps for a CC energy calculation are
supplemented by the solution of the � equations, construction of the density matrices,
their transformation into the AO basis and their subsequent contraction with the integral
derivatives which are computed ‘‘on the fly’’. This means that they are computed and
processed without storing them on disk. A CC second derivative calculation (using the
asymmetric approach) requires, unlike a gradient calculation, a loop over the perturbation
y. Within this loop, the perturbed amplitude and � equations need to be solved for the
perturbation y and the perturbed density matrices are constructed. The latter are
contracted after transformation into the AO basis with the corresponding derivative
integrals. The final step after the loop over y is then the transformation of the unperturbed
MO density matrices and their contraction with the second derivatives of the AO integrals.
Note that a CC second derivative calculation necessitates the storage of the AO derivative
integrals and their transformation into the MO basis. The advantage of the asymmetric
approach, however, is that only derivatives with respect to one perturbation (i.e., y) need
to be considered at each step. In this way the computational expenses are kept low, as only
one additional set of integrals (as well as amplitudes and density matrices) need to be
stored. A possible drawback is that contraction of the perturbed density matrices with
the integral derivatives necessitates a recalculation of the latter for each perturbation y.

Analytic schemes for the evaluation of nuclear forces were first implemented at the
HF-SCF level by Pulay in 1969 [208]. Analytic gradients for MP2 [219] as well as other

Figure 9. [Colour online]. Flowchart for CC energy, gradient, and second-derivative calculations.
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quantum-chemical schemes [232–235] were reported about a decade later, attesting to the

difficulties of formulating and implementing such schemes. At the CC level, the first

implementation of analytic gradients was reported by Scheiner et al. [236] in 1987.
They presented analytic first derivatives for the closed-shell CCSD approach; correspond-

ing open-shell implementations were carried out later in the Bartlett group [230,237,238].

The theory of CCSDT-n and CCSDT gradients was first worked out by Salter et al. [239],
but the implementations were reported only later [240–242]. In 1988, Scuseria and Schaefer

presented analytic gradients for CCSDT-1a [240], CCSDT-n (n¼ 2 and 3) gradients were

presented in 2000 [241], and full CCSDT gradients only in 2001 [242]. Even more recently,

using string-based algorithms for many-body techniques [134] analytic first derivatives
for general CC approaches [243] have been implemented. Work on CCSD(T) gradients

started in 1990 with an implementation of gradients for the (T) correction within the

quadratic CI (QCI) context [244]. Using the same strategy, Scuseria reported shortly

thereafter a first implementation for closed-shell CCSD(T) gradients [245]. The key to
computational efficiency, i.e., the use of perturbed canonical orbitals in order to avoid

recalculation of the triple amplitudes, was first suggested by Lee and Rendell in 1990 [246].

They reported an implementation for closed-shell CCSD(T) based on these ideas;
corresponding generalizations to high-spin open-shell cases were subsequently worked out

by Watts et al. [247,248].
Concerning the analytic evaluation of second derivatives with respect to nuclear

coordinates, an implementation was first reported for HF-SCF wavefunctions [219]
followed by corresponding implementations at the MCSCF and MP2 levels [249–255].

At the CC level, a first implementation was presented by Koch et al. [221] using the

symmetric approach. However, to the best of our knowledge, this implementation

was never used in any applications after the appearance of the original paper. The current
availability of CC second derivatives is thus entirely due to the more recent

implementations based on the asymmetric approach [231,256]. Analytic CCSD and

CCSD(T) second derivatives for closed-shell cases were reported in 1997 [231], the

corresponding implementations for UHF reference functions in 1998 [256]. The initial
work was later extended to the CCSDT-n models [241] and finally in 2002 also to CCSDT

[257]. Use of string-based techniques [134] has more recently enabled the implementation

of analytic second-derivative techniques for general CC wavefunctions using both
closed-shell and open-shell reference functions [258].

It should be noted that within CC theory analytic second-derivative techniques were

first applied to compute nuclear magnetic shielding tensors [226,259,260] which in the

present context is of relevance for the calculation of the nuclear spin–rotation tensor [58].

The reason was simply that the implementation for these properties was somewhat simpler
even when using perturbation-dependent basis functions, as some terms in Equation (137)

vanish. A lot of effort has also been devoted to the computation of first-, second- and

third-order electrical response properties in the framework of CC response theory
[209,229,261–263]. Simplifications result here from the neglect of orbital relaxation [229] as

well as the fact that the electrical perturbation is a one-electron perturbation. The possible

frequency dependence of the perturbation has also been considered in this context

[209,261–263].
Analytic third derivatives of the energy with respect to nuclear coordinates have

only been implemented at the HF-SCF level [264]. Nevertheless, the first steps toward an
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implementation of general third derivatives has been undertaken that offers the possibility
to compute CC hyperpolarizabilities [265–267] as well as to evaluate Raman intensities
[268] which are related to the geometrical derivatives of the polarizability tensor.

As analytic schemes for higher derivatives are not yet available for correlated methods,
one has to rely on numerical techniques. Focusing on cubic and quartic force constants,
we note that numerical differentiation of analytically evaluated quadratic force constants
seems to be a good choice. To estimate vibrational levels using second-order vibrational
perturbation theory, the force fields are needed in the normal-coordinate representation.
These are easily obtained by numerical differentiation of analytically evaluated second
derivatives along the normal coordinates. This is especially convenient, as the calculation
of anharmonic corrections to frequencies requires only the semi-diagonal elements of the
quartic force-constant matrix. The corresponding formulas for the anharmonic force
constants �rst and �rrst are thus given by [37,38,269]

�rst ¼
�þst � �

�
st

2Dr

ð138Þ

and

�rrst ¼
�þst þ �

�
st � 2�st

D2
r

ð139Þ

with the �st as the quadratic force constant in normal-coordinate representation, �þ

and �� the corresponding force constants at the displaced geometries, and Dr as the
displacement along the r-th normal coordinate.

Finally, we note that a number of codes are available for performing CC calculations.
However, to our best knowledge the full set of tools for the efficient treatment of
rotational spectra is currently only offered by the CFOUR program package [270].

5. Applications: interplay of theory and experiment

In this section, it is demonstrated how quantum-chemical calculations can be used to assist
experimental investigations in the field of rotational spectroscopy. For this purpose,
we first discuss the accuracy that can be obtained in high-level calculations of the various
spectroscopic parameters (i.e., rotational constants, centrifugal-distortion constants,
dipole moment, and hyperfine parameters). This discussion will be followed by a few
representative examples that demonstrate the actual interplay of theory and experiment.
No attempt is made here to review the literature in this field; the examples given are drawn
primarily from our work.

5.1. Rotational constants

To guide investigations in rotational spectroscopy, an accurate estimate of the rotational
constants is clearly fundamental and probably most important. As shown in Section 2,
these play a fundamental role in the determination of the rotational energy levels of a
molecule; therefore, their accurate theoretical prediction alone is often more than sufficient
for identifying and assigning lines in a spectrum that belong to the carrier of interest.
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The rotational constants in the vibrational ground state, usually denoted as B�0 with �
referring to the inertial axis, can be decomposed into an equilibrium contribution B�e ,
a vibrational correction DB�vib, and an (often ignored) electronic contribution DB�el:

B�0 ¼ B�e þ DB�vib þ DB�el: ð140Þ

As discussed before, the equilibrium rotational constants Be are obtained in a
straightforward manner from the equilibrium geometry of the molecule. The vibrational
corrections are often approximated by second-order vibrational perturbation theory
(see Section 3 and Equation (62)) and the electronic contributions, finally, are related to
the rotational g tensor via the following relationship [19,191]

DB�el ¼
me

mp
g�B�e ð141Þ

with me and mp as the mass of the electron and proton, respectively.

5.1.1. Accuracy: statistical analysis

Theoretical predictions are not particularly helpful without an estimate of the corre-
sponding accuracy and uncertainty. Therefore, before presenting examples, we start with
a thorough discussion of the accuracy that can be achieved in quantum-chemical
calculations of rotational constants. The discussion is based on a recent statistical analysis
of quantum-chemical results for the rotational constants [191] of 16 closed-shell molecules
(HF, N2, CO, F2, HCN, HNC, CO2, H2O, NH3, CH4, HCCH, HOF, HNO, HNNH,
CH2CH2, and H2CO) for which a total of 97 isotopologues were considered.

Aiming at high accuracy, only CC results have been considered. To recover errors due
to basis set and wavefunction truncation, the composite scheme described in details
in Refs. [190,192] and mentioned in Section 4.3 has been employed. In a first step,
frozen-core (fc) CCSD(T) calculations were performed in conjunction with
correlation-consistent basis sets ranging from triple- up to hextuple-zeta quality
[171,172,177]. The fc-CCSD(T) basis set limit was then estimated using extrapolation
techniques (see Section 4 and Refs. [169,183]) as described in Ref. [190]. In a further step,
corrections for core correlation (Dcore) as well as additional higher-order correlation
effects covered through CCSDT and CCSDTQ calculations (DT and DQ, respectively)
have been included. A final, best estimate for B�e is then taken to be

fc-CCSDðTÞ=cc-pV1Zþ Dcore=cc-pCVQZþ DT=cc-pVTZþ DQ=cc-pVDZ:

The core-correlation contribution Dcore is based on the difference of the all-electron
and frozen-core CCSD(T)/cc-pCVQZ gradients, the DT correction is given as the
corresponding difference between the frozen-core CCSDT/cc-pVTZ and CCSD(T)/
cc-pVTZ gradients, while the DQ contribution is determined by means of the
corresponding difference between frozen-core CCSDTQ/cc-pVDZ and CCSDT/
cc-pVDZ gradients. The vibrational corrections DB�vib were computed with second-order
perturbation theory at the CCSD(T)/cc-pCVQZ level of theory (with all electrons
correlated). The electronic contribution, finally, requires the calculation of the rotational g
tensor. The latter was computed at the fc-CCSD(T)/aug-cc-pVQZ level as described
in Ref. [271].
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The data were analyzed employing the usual statistical measures, i.e., the mean error �D,
the mean absolute error �Dabs, the maximum absolute error Dmax, and the standard

deviation Dstd. Graphical representation of the results was based on normal distributions

defined by

�ðRÞ ¼ Nc exp �
1

2

R� �D
Dstd

 !2
2
4

3
5 ð142Þ

with Nc as a normalization constant.
Table 6 summarizes the results obtained from this statistical analysis and the

corresponding pictorial representations of the results are given in Figure 10.
We note that for the best theoretical estimates the agreement with the corresponding

experimental B0 values is (on average) better than 0.1%. The corresponding mean absolute

error is 0.04% and the standard deviation is 0.07%. This means that computational

predictions for B0 at this (admittedly very elaborate and computationally challenging)

level of theory have an accuracy of generally better than 10MHz (ca. 0.0003 cm�1)

for rotational constants of about 10GHz (ca. 0.3 cm�1) and of about 100MHz

(ca. 0.003 cm�1) for those in the range of 100GHz (ca. 3 cm�1). Such accurate predictions

clearly are useful in guiding experimental searches for lines and also useful for the analysis

of experimental data.
The comparison of different computational approaches in Figure 10 underscores

the importance of vibrational corrections for the high-accuracy prediction of rotational

constants, as a narrow error distribution is only obtained when they are included.

Significantly larger deviations between experiment and theory are observed for all

computational results that do not consider vibrational corrections, and the corresponding

error distributions are rather broad irrespective of the computational approach. In the

absence of vibrational corrections, large basis sets, inclusion of core correlation, or

consideration of higher excitations do not substantially improve the quality of the

results. While vibrational contributions are essential for accurate theoretical predictions,

Table 6. Statistical analysis of the relative errors (in %) in the computed rotational constants with
respect to experimentally determined B0 values.

Computational approach �D �Dabs Dstd Dmax

fc-CCSD(T)/cc-pVTZ �0.188 0.816 1.051 4.087
fc-CCSD(T)/cc-pVQZ 0.254 0.531 0.790 2.628
fc-CCSD(T)/cc-pV5Z 0.335 0.486 0.691 2.527
fc-CCSD(T)/cc-pV6Z 0.356 0.489 0.668 2.492
fc-CCSD(T)/cc-pV1Z 0.380 0.499 0.643 2.448
fc-CCSD(T)/cc-pV6Zþ core 0.676 0.753 0.612 2.668
fc-CCSD(T)/cc-pV6Zþ coreþDT 0.706 0.782 0.604 2.674
fc-CCSD(T)/cc-pV6Zþ coreþDTþDQ 0.608 0.691 0.617 2.614
fc-CCSD(T)/cc-pV1Zþ coreþDTþDQ 0.632 0.710 0.594 2.569
fc-CCSD(T)/cc-pV1Zþ coreþDTþDQþDBvib 0.007 0.057 0.124 1.291
fc-CCSD(T)/cc-pV1Zþ coreþDTþDQþDBvibþDBel �0.003 0.041 0.071 0.264
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the electronic corrections to the rotational constants are typically one to two orders
of magnitude smaller. Their consideration nevertheless leads to a minor improvement

in most cases.
The good agreement between theory and experiment is also illustrated by the results

given in Table 7, where we compare our best theoretical estimates for HF, N2, and HOF

with available experimental rotational constants [272–274]. For the hydrogen fluoride
molecule, the vibrational corrections amount to 11811MHz (1.92% of the total value)
and the electronic contribution to 257MHz (0.04%). With 616304.6MHz as the best

Figure 10. [Colour online]. Normal distribution �(R) of the errors in the calculated rotational
constants in comparison with experimental B0 values [191].

Table 7. Comparison of the theoretical best estimates (for a definition,
see text) and experimental values for the rotational constants A0, B0, C0

(in MHz) of HF, N2, and HOF.

Experiment Theory Error

HF
B0 616565.219(13)a 616304.6 260.6 (0.042%)

N2

B0 59646.48(11)b 59660.7 14.2 (0.024%)

HOF
A0 585631.508(72)c 585998.9 366.5 (0.06%)
B0 26760.650(12)c 26818.0 57.4 (0.21%)
C0 25509.886(12)c 25571.2 61.3 (0.24%)

aRef. [272].
aRef. [273].
aRef. [274].
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estimate for B0 and 616565.219(13)MHz as the experimental value [272], the final error

in the best theoretical prediction is 261MHz (0.04%). It is clear that any further

improvement in the theoretical predictions has to involve a more complete treatment of

vibrational effects. The large magnitude of the vibrational corrections immediately poses

the question of whether the perturbative approach to the vibrational problem is sufficient.

The treatment of these effects using variational schemes (see, for example, Ref. [275]

and references therein) might be a valid alternative or one might extend the perturbative

treatment to higher-orders. The latter option necessitates the evaluation of the

second-order vibration–rotation interaction constants ��rs

B�0 ¼ B�e �
1

2

X
r

��r þ
1

4

X
r�s

��rs ð143Þ

for which so far no routine computational treatment is available. Work along these lines

is currently in progress [70].
Figure 11 provides a detailed comparison of the performance of the different

computational schemes by comparing computed equilibrium rotational constants with

corresponding values obtained from experiment by subtracting the vibrational corrections.

First of all, it is obvious from the figure that improvements in the basis set lead to

narrower error distributions. While for the cc-pVTZ basis a rather broad distribution

is seen, the cc-pV6Z distribution is sharper, and only a marginal further improvement

is observed for the results obtained via basis-set extrapolation. A further significant

improvement is seen when core-correlation effects are included, thus confirming the

Figure 11. [Colour online]. Normal distribution �(R) of the errors in the calculated rotational
constants in comparison with Be values derived from experimental B0 values and computed
vibrational corrections [191].
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importance of these effects for accurate geometry predictions [192,276]. On the other
hand, the consideration of a more rigorous treatment of triple excitations than CCSD(T)
has only marginal effects. Inclusion of quadruple excitations at the CCSDTQ level,
however, leads to a further gain in accuracy and results in a significantly sharper
distribution function.

5.1.2. Examples

An excellent example where the prediction of rotational constants is vital is the recent
detection of oxadisulfane (HSOH) via rotational spectroscopy [4]. A major key to the
successful identification of HSOH among the products of the pyrolysis of (t-Bu)2SO was
the availability of accurate predictions of the spectroscopic parameters. Indeed, previous
searches for HSOH without these predictions in hand were unsuccessful [4]. The
theoretical prediction of the spectra was based on the equilibrium geometry obtained at the
CCSD(T)/cc-pCVQZ level, i.e., with consideration of core correlation, and vibrational
corrections to the rotational constants and centrifugal distortion constants computed
from harmonic and anharmonic force fields obtained at the MP2/cc-pVTZ and CCSD(T)/
cc-pVTZ levels of theory. In addition, the computed components of the dipole moment
were used to predict the relative intensities of the rotational transitions. Figure 12 provides
an example for a predicted spectrum (shown here is the rQ1 branch with a band center near
561GHz) in comparison with the experimental spectrum [4]. The excellent agreement
between theory and experiment attests to the fundamental role that quantum-chemical
calculations can play in the detection of new molecules. The only noteworthy discrepancy
between the observed and predicted spectrum in Figure 12 is the additional splitting due to
the torsional motion seen in the experimental spectrum. This splitting has not been treated

ab initio

experimental
520000 540000 560000 580000 600000

520000 540000 560000 580000 600000

b-type
c-type

b-type
c-type

20

20

10
5 5

10

20

20

526980 527000 527020
n/MHz n/MHz n/MHz n/MHz

527100 527110 589130 589140 589150 590740 590760 590780 590800

Figure 12. [Colour online]. Comparison of theoretically predicted and experimental rotational
spectra of HSOH [4]. Shown is the rQ1 branch with a band center at 561GHz.
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in the theoretical prediction and this omission was of no relevance for the detection of

HSOH. However, it should be noted that theoretical values for the corresponding

torsional barriers have been calculated and given in Ref. [4]. The corresponding values of

2216 and 1579 cm�1 (for the cis and trans transition states) are in line with the measured

splitting of about 20MHz and 100MHz observed in the experiment for the b and c type

transitions, respectively. A more detailed theoretical treatment of the torsional motion

together with theoretical values for the splittings have been given in Refs. [277–280]. In the

initial investigation of HSOH, a total of about 600 lines were identified; among them

about 120 could be attributed to H34SOH, present in natural abundance [4]. For structural

characterization of HSOH, however, it was essential to also determine the spectroscopic

parameters of the corresponding deuterated species. As the synthesis of the deuterated

precursor compounds was decided to be too involved, attempts were made to produce

HSOH in discharges of mixtures of H2S and H2O. With the known spectra, it was

rather straightforward to optimize the discharge conditions and then, again guided by

quantum-chemical predictions, to carry out radio-frequency discharges of D2S/D2O and

H2O/D2O in the presence of sulfur powder. In this way, the spectra of DSOD [281,282]

and HSOD [283] could be detected, while, for unknown reasons, the DSOH isotopologue

has not been observed. Table 8 summarizes the measured rotational constants for the

HSOH isotopologues and compares them to corresponding theoretical predictions.

The remaining discrepancies of less than 70MHz for the A constant and about a few MHz

for the B and C constants are surprisingly small. Nevertheless, the example of HSOH

provides a convincing demonstration that accurate quantum-chemical calculations can

Table 8. Comparison of experimental and theoretical rotational
constants (in MHz) for the known isotopologues of HSOH.

Experiment Theory

HSOHa

A0 202 069.05431(134) 202 135.8
B0 15 281.956620(123) 15 278.9
C0 14 840.216440(121) 14 840.4

H34SOHa

A0 201 739.7641(129) 201 806.9
B0 15 001.43940(38) 14 998.4
C0 14 573.77816(39) 14 573.9

DSODb

A0 106 850.4937(55) 106 908.5
B0 13 865.38319(173) 13 864.6
C0 13 173.54491(227) 13 176.4

HSODc

A0 159 965.20(44) 159 973.5
B0 14 132.204(40) 14 133.1
C0 14 020.685(41) 14 023.5

aRef. [4].
bRefs. [281,282].
cRef. [283].
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guide experiment and in particular help to restrict the searches to narrow frequency ranges.
It is noteworthy in this context that, using a similar pyrolysis reaction (but starting
from (t-Bu)-S(O)S-(t-Bu) and again based on quantum-chemical predictions of the
rotational spectra, the cis- and trans-isomers of HSSOH could be detected using rotational
spectroscopy [15,284].

There are many other examples in the literature (see for instance Refs. [9–11,31,
285–289]) where the spectroscopic investigations have been guided by theoretical
predictions. We will not discuss them and instead refer the interested reader to the
original work [9–11,31,285–289]. The context is more or less the same in all cases, namely,
that first theoretical predictions of the rotational spectra and transitions help to define
a suitable frequency range for the spectroscopic searches and second that the agreement
between the theoretical and experimental parameters can be used to verify the assignment
of the spectra. Clearly, the more accurate the predictions are the more useful are those for
the spectroscopic searches and in this way it is obvious that high-level quantum-chemical
calculations are essential for the interplay of theory and experiment in the area of
rotational spectroscopy.

5.1.3. Equilibrium structures

The preferred choice for reporting structural information is to quote the equilibrium
parameters that are defined via the corresponding minimum on the Born–Oppenheimer
potential surface. In this way, vibrational effects are rigorously excluded and the reported
structure is, at least to the extent the Born–Oppenheimer approximation is valid,
independent of the isotopic species. The same is not true for other types of structural
parameters often reported in the literature (for an overview and definition of these
parameters, see, for example, Ref. [290]). Nevertheless, the use of those structures, e.g.,
of the r0 and rs structures in the case of rotational spectroscopy, is most often dictated
by the fact that they are, unlike the re structure, obtained in a rather straightforward
manner from the analysis of the rotational constants inferred from the experimental data.

While rotational spectroscopy is the method of choice for obtaining highly accurate
structural information, it still is a formidable task to extract the desired information from
the experimental data. The first problem is that there are as many rotational constants
needed as there are independent structural parameters. For polyatomic molecules this
usually necessitates the investigations of more than one isotopologue of the considered
molecule. Furthermore, the number of isotopically substituted species increases with the
size of the system, thus rendering structural determinations for larger molecules
cumbersome or simply impossible using rotational spectroscopy. Clearly, for this reason
rotational spectroscopy is the method of choice for small to medium-sized systems only.
A second issue is that the derivation of an equilibrium structure requires the explicit
consideration of vibrational effects. Though they can in principle be obtained from the
analysis of ro-vibrational spectra, such an approach indeed is only practical in the case
of diatomic and a few triatomic molecules. The main problem is that such a pure
experimental approach to equilibrium structures requires the knowledge of all vibration–
rotation interaction constants for all of the considered isotopic species. And usually, the
complete set of these constants is not available, thus hampering the determination of the re
structure. Furthermore, the experimental approach can be complicated by Coriolis
resonances, which affect only the vibration–rotation constants, but not the overall
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vibrational contribution [72]. A way out of this problem is the use of quantum-chemically
computed vibrational corrections to the rotational constants. The combination of the
experimentally determined ground-state rotational constants with these computed
corrections then allows the determination of equilibrium rotational constants and
consequently of an equilibrium structure. This combined experimental-theoretical
approach to equilibrium geometries has turned out in recent years to be a powerful tool
(see, for example, Refs. [10,32,72,269,289,291–322]) and the in this way obtained
structures, due to the computational contribution, are usually referred to as ‘‘empirical’’,
‘‘mixed experimental/theoretical’’, or ‘‘semi-experimental’’.

The first example for an empirical structure has been reported more than thirty
years ago in a study of methane, in which Pulay, Meyer, and Boggs [291] corrected the
experimental rotational constants for CH4 using computed corrections. The reported
equilibrium C–H distance (1.0862� 0.0005 Å) turned out to be very accurate and has been
more or less confirmed in a more recent redetermination of the CH distance [312] which
suggested a value of 1.08595� 0.0003 Å). Efforts in the same direction have been
subsequently made by many others, especially Allen [72,292,293], Botschwina [294–299],
Gauss [10,269,283,289,300–311], Stanton [269,300–304,312–317], Puzzarini [289,308,311,
318–321], Demaison [322–329], Craig [330–333], Groner [330,332–335] and others.

5.1.3.1. Procedure. The empirical equilibrium structure is obtained by a least-squares
fit of the molecular structural parameters to the equilibrium moments Ie� (or alternatively
the equilibrium rotational constants B�e ) for a sufficiently large number of isotopologues of
the considered molecule. The equilibrium values for Ie� (more precisely B�e ) are thereby
obtained by correcting the experimental rotational constants (B�0) for vibrational effects
according to Equation (62) with the sum of the vibration–rotation interaction constants
determined via quantum-chemical calculations. The usual way for obtaining these
corrections is second-order vibrational perturbation theory as described in Section 3, but
clearly other, in particular non-perturbative approaches to these corrections are feasible.
The moments of inertia are then obtained via Equation (10). However, there exist different
opinions whether one should use the moments of inertia or the rotational constants
in the least-squares fit to the structures. However, in out opinion, the choice of how one
weights the various constants in the fit is more important. The use of moments of inertia
with equal weights for all included values clearly is one of the possible recommended
choices, while the use of rotational constants is often hampered by the large A constants.
Those need to be either excluded from the fitting or considered with a rather low weight.
Figure 13 illustrates the various steps involved in the determination of empirical
equilibrium structures and also emphasizes that without the (computed) vibrational
corrections it is only possible to determine the from a theoretical viewpoint and also in
terms of accuracy less satisfying r0, rs, . . . structures.

5.1.3.2. Examples. A systematic investigation concerning the accuracy of this procedure
to obtain empirical or semi-experimental equilibrium structures has been carried out by
Pawlowski and coworkers [32]. They conclude that for molecules containing first-row
elements the determined equilibrium bond distances typically have an accuracy of
about 0.001 Å provided electron correlation is considered in the calculation of the
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vibrational corrections. In Table 9, we compare for a few molecules the empirical bond

distances (vibrational corrections have been obtained at the CCSD(T)/cc-pVQZ level, for

details, see Ref. [32]) with equilibrium distances obtained using experimentally determined
vibration–rotation interaction constants for the estimation of the vibrational effects.

The excellent agreement clearly attests to the power of the semi-experimental approach

to equilibrium geometries.
In the following, we will give a few representative examples for the actual application

of the semi-experimental approach. Let us first consider again oxadisulfane (HSOH).

The spectroscopic investigation provided the rotational constants not only for the main

isotopic species HSOH but also for H34SOH [4], DSOD [281,282], and HSOD [283]. The

twelve available constants (A0, B0, and C0) together with the computed vibrational

corrections (available from the theoretical study for the prediction of the rotational spectra

of HSOH) then enabled the determination of the equilibrium structure of this molecule,

only shortly after its detection via rotational spectroscopy. The excellent agreement
between the empirical structure obtained in this way and results from high-level

calculations (CCSD(T)/cc-pCVQZ level) is documented in Figure 14.

Figure 13. [Colour online]. Procedure for determining empirical equilibrium structures based on
experimental rotational constants.

Table 9. Comparison of equilibrium bond distances (in Å) obtained
from experimental rotational constants using experimental and
computed vibrational corrections. The theoretical best estimates
have been taken from Ref. [190].

re(exp) re(emp)
Theoretical
best estimate

HF 0.91680(8) 0.9169 0.9171
CO 1.12832 1.1284 1.1284
N2 1.09768(5) 1.0977 1.0975
H2O 0.9572 0.9575 0.9578
NH3 1.011(6) 1.0116 1.0109
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The trans and cis isomers of 1-chloro-2-fluoroethylene (CHF¼CHCl) provide another

example for the joint experimental and theoretical determination of equilibrium structures
[31,308]. In addition, this example demonstrates how quantum-chemical calculations are

useful for verifying the proper assignment of the experimental spectra. Due to the fact that

both isomers of CHF¼CHCl have nine geometrical degrees of freedom, it is clear that
the experimental investigation of the two main isotopic species (CHF¼CH35Cl and

CHF¼CH37Cl) is not sufficient for the determination of the equilibrium structure and that
deuterated and 13C substituted species need to be investigated. No problems in this regard

were encountered for the cis isomer and rotational constants for ten isotopologues could

be determined [336,337]. However, for the trans isomer, some complications had to be
overcome. After detection of the rotational spectra for the main isotopic species [338], it

proved difficult to assign the corresponding spectra for the deuterated species. The usual

procedure to improve the computed spectroscopic parameters via scaling based on the
observed deviations between theory and experiment for the main isotopic species did not

provide reliable estimates and, in particular, did not allow assignment of the correspond-

ing spectra. Nevertheless, it was finally possible, albeit difficult, to assign the spectrum
for CD35Cl¼CHF; however, the determined parameters showed rather large deviations

with respect to the scaled values. Based on the values for CD35Cl¼CHF, it was then
possible to assign the spectra for all other deuterated species. Unfortunately, it was then

impossible to obtain a satisfactory fit for the equilibrium structure using the available

set of experimental rotational constants. This was rather surprising, as theoretical
considerations clearly indicated that the set of data should be sufficient for a

determination of the equilibrium structure of trans-CHCl¼CHF. A closer analysis

revealed inconsistencies between the determined spectroscopic parameters for the main
species and the others. This suggested, together with the difficulties in assigning the spectra

for the deuterated species, that the reported data for the main species were not those for

the vibrational ground state rather those for a vibrationally excited state. An experimental
reinvestigation confirmed this conclusion [31] and provided the proper spectroscopic

parameters for the two main isotopic species.
Using the available rotational constants together with the computed vibrational

corrections obtained at either the MP2/cc-pVTZ or the CCSD(T)/cc-pVTZ level, it was

Figure 14. [Colour online]. Empirical equilibrium structure of HSOH [283]. Theoretical results as
obtained at the CCSD(T)/cc-pCVQZ level are given in parentheses. Bond lengths are given in Å,
angles in degrees.
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possible to obtain an empirical equilibrium structure for both isomers of CHF¼CHCl
(see Figure 15). The geometrical parameters for both isomers are also given in Table 10
where they are compared to parameters for other substituted ethylenes. The comparison
in Table 10 shows that in the cis form of CHCl¼CHF the C–X distances (X¼F and Cl)
are considerably shorter (by about 0.005 to 0.007 Å) and that there are rather pronounced
differences in the corresponding angles (up to 2.5�), thus reflecting the steric and electronic
interactions in the halogenated ethylenes. It is also noteworthy that for both isomers
a significantly shorter C–C distance than for unsubstituted ethylene (by about 0.010 Å) is
found. The findings for CHCl¼CHF are in good agreement with earlier results for
1,2-difluoroethylene [330] as well as for 1,2-dichloroethylene [331,339].

Concerning other examples reported in the literature, we would like to discuss only the
following cases. The first deals with the two isomers of cyclic SiC3 [7,303] for which it has
been found essential to include the electronic contribution to the rotational constants
(see Section 5.1) in order to reduce the inertial defect to an acceptable value. The latter is
defined as [1,2]

D ¼ Ic � Ia � Ib ð144Þ

and vanishes for planar molecules provided the equilibrium inertial moments are used to
evaluate D. The corresponding D values for the two isomers of SiC3 are given in Table 11.
It is clearly seen that, as expected, the use of the uncorrected rotational constants B0 leads
to a relatively large positive inertial defect. The latter is significantly, though not entirely,
reduced by considering vibrational corrections to the rotational constants. However,
unlike for many other cases, additional consideration of the electronic contributions to the
rotational constants is required for both isomers of SiC3 to reduce the inertial defect to an
acceptable value. The (empirical) equilibrium structures of SiC3 are depicted in Figure 16
together with the available theoretical values obtained at the CCSD(T)/cc-pCVQZ level
[303]. The effect of including the electronic contribution is found here rather small. The
largest correction of 0.0005 Å is seen for the transannular C–C bond of isomer I.

A larger effect on the equilibrium geometry due to the electronic contribution to the
rotational constant is seen in the case of the diatomics BH and CHþ. Here, as documented

Figure 15. [Colour online]. Empirical equilibrium structure of trans- and cis-CHF¼CHCl [283,308].
Theoretical results, given in italics, correspond to the best estimates given in Ref. [308] based on
CCSD(T) calculations and the use of extrapolation techniques. Bond lengths are given in Å, angles
in degrees.

326 C. Puzzarini et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



T
a
b
le

1
0
.
E
m
p
ir
ic
a
l
eq
u
il
ib
ri
u
m

g
eo
m
et
ri
es

o
f
su
b
st
it
u
te
d
et
h
y
le
n
es

(d
is
ta
n
ce
s
in

Å
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in Table 12, the inclusion of this contribution leads to changes in the bond distance of

about 0.002 Å and thus is mandatory to reach agreement with results from high-level

quantum-chemical calculations.
Furthermore, we would like to draw attention to the cases of CCH and FCCCCH, as

these two examples nicely illustrate how a missing or non-rigorous treatment of vibrational

corrections can lead to structural parameters (r0 and/or rs) that are not good approxi-

mations for the corresponding equilibrium values.
Let us start with the ethynyl radical. Its equilibrium structure has recently been

determined via the mixed theoretical-experimental approach [307]. Comparison with the

earlier determined rs and r0 structures [341] clearly reveals that the latter two provide a

significantly too short C–H distance (see Figure 17) and thus are not good representatives

for the true equilibrium geometry of this molecule. While this is not unexpected for the r0
geometry, the failure of the substitution approach, which is often claimed to eliminate

vibrational effects to a good approximation, is noteworthy and suggests that it should only

be used with some care. The present findings are also supported by high-level
quantum-chemical calculations [307,342] which confirm the reliability of the determined

empirical equilibrium structure of the ethynyl radical. Another example in this context

Figure 16. [Colour online]. Empirical equilibrium structure (in Å) of the two cyclic SiC3 isomers [303]
in comparison with theoretical results (in parentheses) obtained at the CCSD(T)/cc-pCVQZ level.

Table 11. Inertial defects D (in amuÅ2) as determined for the
experimental (B0) and the empirical equilibrium (Be) rotational
constants for the two isomers of cyclic SiC3 [303].

Isomer I Isomer II

B0 0.059 0.073

Be
a 0.018 0.022

Be
b 0.001 0.000

aDetermined without consideration of the electronic contribution
to the rotational constant.
bDetermined with consideration of the electronic contribution to the
rotational constant.
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is monofluorodiacetylene (see Figure 17). The substitution approach again yields in this
case a too short C–H distance [297,343], but more severe is that the rs structure is not
able to properly describe the changes in the C–C distance due to substitution by fluorine
with respect to diacetylene. A detailed account on the structural parameters in diacetylenes
can be found, for example, in Ref. [309].

To conclude this section, we would like to recommend that structure determinations
based on rotational spectroscopy should be – whenever possible – carried out using
the mixed theoretical-experimental approach that has been described here. Only in this
way is it possible to obtain reliable structural parameters with high accuracy and with
a rigorous physical meaning. Furthermore, due to significant computational advances
in the recent years, the calculation of the force fields required is usually not a major
obstacle for obtaining such an equilibrium structure in the case of the small to
medium-sized molecules typically studied. A final remark concerns molecules character-
ized by large-amplitude motion. In this case, some care is required when evaluating
vibrational corrections, and a variational approach might be the preferred choice (see, for
example, Refs. [344,345]).

Figure 17. [Colour online]. Substitution (rs), effective (r0) and empirical equilibrium (re) structures
(in Å) of ethynyl radical and monofluorodiacetylene.

Table 12. Equilibrium bond distance (in Å) of BH and CHþ as determined
from the experimental rotational constant with and without consideration
of the electronic contribution to the rotational constant and from high-
level quantum-chemical calculations performed at the fc-CCSD(T)/cc-
pV1ZþDT/cc-pVTZþDQ/cc-pVDZþD core/cc-pCVQZ level.

BH CHþ

Exp. (literature) 1.2324a 1.1309a

Emp. (without consideration of DBel) 1.2321 1.1309
Emp. (with consideration of DBel) 1.2299 1.1284
Theoretical best estimate 1.2302 1.1279

aRef. [340].
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5.1.4. Rotational constants for vibrationally excited states

As the investigation of molecules in vibrationally excited states by means of rotational
spectroscopy has recently attracted some interest (see, for example, Refs. [76,77,287,

346–355]), it is important to guide corresponding investigations via quantum-chemical
calculations. With the focus on the corresponding shift in the rotational constants, the

relevant equations are

B�v1,v2,... ¼ B�e �
X
r

��r vr þ
1

2

� �
ð145Þ

or, when targeting at a state with a single vibrational level excited

B�vr¼1 ¼ B�0 � �
�
r : ð146Þ

In other words, the prediction of the rotational constants B�vr¼1 for such a vibrationally

excited state requires the knowledge of the individual vibration–rotation interaction
constants ��r . Expressions for computing these constants from available harmonic and

cubic force fields have been given in Section 3 (see Equation (64)). One could now argue
that these constants are already needed for the prediction of the B�0 values. However,

there is one important difference. While for the determination of B�0 only the sum of all ��r
is required, and in this way problems due to possible Coriolis resonances are avoided,

this is no longer the case for the determination of B�vr¼1, as the individual interaction
constants are now needed. Consequently, the prediction of rotational constants for

vibrationally excited states can be affected by Coriolis resonances and is therefore a
fundamentally more difficult endeavor. In such cases, the use of special treatments beyond

the perturbational approach discussed in Section 3 is warranted.
The computational requirements for the accurate determination of vibration–rotation

interaction constants have been, for example, discussed in Ref. [32]. Table 13 demonstrates
the accuracy that can be achieved in the prediction of these constants. A statistical analysis

in Ref. [32] with respect to electron-correlation and basis-set treatment furthermore
suggests that the corresponding calculations are best carried out at the MP2 or CC level

using basis set of at least triple-zeta quality. The values obtained using MP2/cc-pVTZ or
CCSD(T)/cc-pVTZ cannot be considered entirely converged, but the remaining errors

are rather small. HF-SCF calculations turn out less useful in general, and the use of a
double-zeta basis set cannot be recommended either.

5.1.4.1. Examples. As an example for the usefulness of theoretical predictions of the
vibration–rotation interaction constants and the corresponding rotational constants

for vibrationally excited states, we mention here the recent investigation of the 
11¼ 1 and

14¼ 1 vibrationally excited states of methyldiacetylene (CH3CCCCH) [346].

Quantum-chemical predictions were essential (see Table 14), as only in this way was it
possible to distinguish in the crowded spectrum (see Figure 18) between transitions due to

the various vibrationally excited states (
11¼ 1, 
12¼ 1, 
13¼ 1, and 
14¼ 1 bending modes)
and those for the 13C containing species in natural abundance. Indeed, the transitions due

to the vibrationally excited states turned out to be more intense than those of
CH3C

13CCCH investigated in Ref. [320].
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5.2. Centrifugal-distortion constants

For accurate line predictions, in particular when dealing with high J values, it is not
sufficient just to provide the rotational constants; rather one must also compute the
corresponding centrifugal-distortion constants. Figure 19 shows an example for the impact
of centrifugal-distortion on rotational spectra and clearly underlines the need for the

Figure 18. [Colour online]. A portion of the J¼ 24 23 transition in the rotational spectrum of
CH3CCCCH is reported: the position of the four lowest and ground-state bands is made evident.

Table 13. Comparison of calculated and experimental �br values (in MHz) for a few diatomic
molecules. The last two columns report the absolute discrepancy ��br ðabsÞ ¼ �

b
r ðcalc:Þ � �

b
r ðexp:Þ and

relative discrepancy ��br ðrelatÞ ¼ ��
b
r=�

b
r ðexp:Þ (in %) between the experimental and theoretical

values. Computational results have been obtained at the CCSD(T)/cc-pVQZ level; for further
details, see Ref. [32].

Molecule B0 �br ðcalc:Þ �br ðexp:Þ ��br ðabsÞ ��br ðrelatÞ

H2 1778788.6 90537.3 91796.4a �1259.1 �1.4
F2 26470.2 376.8 387.9b �10.8 �2.9
N2 59646.4 508.1 518.3c �10.2 �2.0
HF 616343.3 23593.7 23923.4a �329.8 �1.4
CO 57636.0 516.8 524.6a �8.1 �1.5

aRef. [340].
bRef. [356].
cRef. [357].
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knowledge of the centrifugal-distortion parameters for the reliable and accurate prediction
of the corresponding transitions.

The relevant theory for centrifugal distortion has been outlined in Section 2 and can be
found in greater detail in Refs. [1–3,45]. We only remind the reader that, for the theoretical
determination of the quartic centrifugal-distortion constants, knowledge of the harmonic

Table 14. Comparison. of computed and experimental (given in parentheses) spectroscopic
parameters for various vibrationally excited states of CH3CCCCH. For further details, see Ref.
[346].


 (cm�1) Av (MHz)a �av (MHz)b Bv (MHz)a �bv (MHz)b


14¼ 1 154.4 (139) 158797.4 30.4 2039.8 (2040.14) �4.1 (�4.40)

13¼ 1 315.5 (320) 158825.5 2.3 2039.1 �3.4

12¼ 1 431.3 (484) 158841.3 �13.5 2039.0 �3.3

11¼ 1 591.0 (614) 158827.8 9.5 2036.5 (2036.33) �0.8 (�0.59)
Ground state 158827.8 2035.7 (2035.74)

aObtained by combining equilibrium rotational constants from the best theoretical structure in
Ref. [320] with vibrational corrections obtained at the MP2/cc-pVTZ level.
bMP2/cc-pVTZ calculations.

Figure 19. [Colour online]. Impact of centrifugal distortion on the rotational spectrum (DJ¼ 0,
K�1¼ 8, at �703GHz) of trans-CH35Cl¼CDF. Shown are the experimental (blue) and the with
(black) and without (red) considering centrifugal distortion computed spectra [31].
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force field suffices, while the computation of sextic centrifugal-distortion constants in
addition requires the cubic force field. For both type of centrifugal-distortion constants,
computer programs are available (see, for example, Refs. [358–360]).

5.2.1. Accuracy and examples

To the best of our knowledge, no detailed investigation has been carried out concerning
the accuracy of computed centrifugal-distortion constants with respect to electron-
correlation and basis-set effects. Usually, these constants are evaluated at the same level as
the corresponding force fields needed either for the prediction of the vibrational
frequencies or the vibrational corrections to the rotational constants. It is assumed, and
generally found, that the accuracy provided by these levels of theory (often MP2 or
CCSD(T) with triple-zeta or quadruple-zeta quality basis sets) is sufficient.

As an example for the calculation of quartic centrifugal-distortion constants, we
provide in Table 15 a comparison between theory and experiment for these constants

Table 15. Experimental and calculated quartic centrifugal-distortion con-
stants (in kHz) for various isotopologues of trans-1-chloro-2-fluoroethylene.
The computational results have been obtained at the CCSD(T)/cc-pVTZ level
and have been taken from Ref. [31].

Experiment Theory Experiment Theory

CH35Cl¼CHF CH37Cl¼CHF
DJ 0.31904(10) 0.310 0.30524(12) 0.297
DJK �10.37041(64) �10.909 �10.2591(10) �10.787
DK 759.992(65) 796.364 763.42(10) 800.168
�J 0.020720(74) 0.020 0.019397(20) 0.019
�K 2.2410(82) 2.083 2.158(12) 2.001

CD35Cl¼CHF CD37Cl¼CHF
DJ 0.302a 0.302 0.289a 0.289
DJK �7.0651(32) �7.502 �7.0122(61) �7.470
DK 502.694(56) 527.567 505.815(88) 530.700
�J 0.02474(61) 0.024 0.02410(92) 0.023
�K 2.086c 2.086 2.002a 2.002

CH35Cl¼CDF CH37Cl¼CDF
DJ 0.309(31) 0.309 0.296a 0.296
DJK �5.3916(68) �5.695 �5.3586(39) �5.651
DK 342.026(97) 351.130 343.05(10) 351.949
�J 0.0200(12) 0.023 0.02037(12) 0.021
�K 2.39(54) 2.239 2.15(29) 2.152

CD35Cl¼CDF CD37Cl¼CDF
DJ 0.298(22) 0.300 0.288c 0.288
DJK �4.3563(14) �4.639 �4.3449(12) �4.628
DK 241.080(22) 249.260 241.9643(93) 250.363
�J 0.02740(16) 0.027 0.02200(65) 0.025
�K 2.014a 2.014 1.936a 1.936

aValues kept fixed at the theoretical value in the analysis of the experimental
spectra.
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for the recently investigated trans-CHCl¼CHF molecule [31]. The agreement is for all
parameters within a few percent and, thus, it is obvious that corresponding theoretical
predictions can be helpful in the analysis of experimental spectra. This is in particular
the case when some of the constants cannot be determined solely on the basis of the
experimental data. In those cases, it is recommended to set the corresponding constants to
the theoretically predicted values and to keep them fixed during the fitting procedure
(see, also Table 15).

5.3. Dipole moments

In rotational spectroscopy, quantum-chemical calculations of dipole moments are
of interest mainly because the intensities of rotational transitions are determined by the
corresponding components of the molecular dipole moment. Theoretical predictions are
thus of importance for deciding whether a molecule is suitable for an investigation using
rotational spectroscopy and for identifying observable transitions for the experimental
investigation. For these tasks, reliable, though not necessarily highly accurate predictions
of dipole moments are needed, as one is dealing here solely with the more qualitative
aspects of rotational spectroscopy. Quantitative predictions, however, are relevant in
connection with Stark measurements in the presence of external electric fields (see, for
example, Chapter 7 of Ref. [2]). With this technique, it is possible to determine
dipole-moment values by means of rotational spectroscopy, and quantum-chemical
calculations are here useful for verifying experimental results.

5.3.1. Accuracy and examples

An extensive benchmark study concerning the quantum-chemical determination of dipole
moments has been, for example, reported in Ref. [361]. Table 16 reproduces some of the
results presented in that study. We note first of all that the use of basis sets augmented by
diffuse functions, e.g., the use of the aug-cc-p(C)VnZ sets instead of the standard
cc-p(C)VnZ sets within Dunning’s hierarchy of correlation-consistent basis-sets (see
Section 4.3), is strongly recommended [362,363]. This is a well-known recommendation
and due to the fact that the dipole operator samples the outer valence region in a molecule.
With the additional consideration of diffuse functions, the main requirement for an
acceptable basis set is more or less met, and reasonable results are already obtained at
MP2/aug-cc-pVTZ or CCSD(T)/aug-cc-pVTZ levels. HF-SCF calculations typically
overestimate the magnitude of the dipole moment, while, on the other hand,
electron-correlation effects beyond MP2 are often not substantial except in challenging
cases such as, for example, CO or CH2 (see Table 16). A rigorous comparison of computed
dipole moments with experiment turns out difficult, as in many cases no accurate
experimental values are available or the magnitude of vibrational effects is unknown.
The latter can be non-negligible and amount, for example, for HF to 0.023 D (41% of
the total value). In the calculations, however, vibrational effects can be accounted for as
described in Section 3.2 using perturbation theory.

An example of the utility of quantum-chemically calculated dipole moments is
provided by the investigations of trisulfane (H2S3 [364,365]) and 1-oxatrisulfane (HSSOH
[15,284]) by means of rotational spectroscopy. For both species, cis and trans forms exist
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(see Figure 20 in the case of HSSOH) with the trans conformer being slightly more
stable. Nevertheless, in accordance with quantum-chemical calculations, for both H2S3
(cis: �c¼�1.5851 D, and trans: �b¼ 0.5627 D, �c¼�0.5559 D; CCSD(T)/cc-pCVQZ
calculations) and HSSOH (cis form: �a¼ 0.187 D, �b¼ 0.538 D, �c¼ 2.179 D; trans form:
�a¼ 0.195 D, �b¼ 0.539 D, �c¼ 0.550 D; CCSD(T)/cc-pCVQZ calculations [15]), the cis
form has been first detected via rotational spectroscopy due to its stronger lines in the
spectrum. In the case of HSSOH, it was furthermore possible, based on the measured
relative intensities and the calculated dipole moments, to provide an estimate for the
relative abundance of both forms. The ratio found for trans versus cis is 2.2 and
in apparent agreement with the quantum-chemical prediction that the trans form is the
more stable one (by about 2 kJ/mol). This interpretation, however, should be taken with
some care, as the ratio in the reaction mixture is not in thermodynamic equilibrium
and other factors might affect the trans–cis ratio as well.

As an example for the determination of dipole moments via Stark measurements,
we cite a recent study of CH2BrF [366]. The effect of the applied electric field on the
rotational transition is illustrated in Figure 21. We note that the analysis of the
corresponding spectra is further complicated by hyperfine interactions (see next section).
Nevertheless, the determined experimental dipole-moment components are in good
agreement with theoretical predictions. Table 17 provides a comparison and demonstrates
the importance of basis-set extrapolation, proper inclusion of core-correlation effects,
and vibrational corrections to yield satisfactory agreement. Despite the bromine, in the
present case, relativistic effects are not important, as is consistent with the results of a
benchmark study concerning relativistic effects on electrical properties [367].

5.4. Nuclear quadrupole coupling

In molecules with quadrupolar nuclei the nuclear quadrupole coupling is the main
mechanism responsible for additional splittings in the rotational spectrum. The analysis of
this fine structure is significantly facilitated by quantum-chemical calculations, which can
provide, as discussed in Section 2.3, the electric-field gradient at the corresponding nuclei.
We will present here examples for such calculations, but also point out that quadrupole-
coupling constants from rotational spectroscopy when combined with results for

Figure 20. [Colour online]. Structures of cis- and trans-HSSOH as in predicted by means of
CCSD(T)/cc-pCVQZ calculations. The computed geometrical parameters can be found in Ref. [15].
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electric-field gradients from quantum-chemical calculations can be used for the determi-
nation of nuclear quadrupole moments [368–370].

5.4.1. Accuracy

As the electric-field gradient operator, as given in Equation (42), exhibits a cubic
dependence on 1/jr�RKj, it is strongly affected by the electronic structure in the

Figure 21. [Colour online]. Stark spectra of the F¼ 9/2 and F¼ 11/2 hyperfine components of the
J¼ 52,3 51,4 rotational transition for CH2FBr recorded with different voltage applied (64.8V,
74.0V, 82.2V, 91.1V, and 106.6V) to the electrodes (d¼ 0.28945(7) cm).

Table 17. Quantum-chemically calculated and experimental dipole-moment components (in Debye)
of CH2

79BrF [366].

�a �b �tot

CCSD(T)/aug-cc-pVTZ �0.322 �1.678 �1.709
CCSD(T)/aug-cc-pVQZ �0.341 �1.696 �1.730
CCSD(T)/aug-cc-pV5Z �0.346 �1.700 �1.735
CBS �0.350 �1.702 �1.738
CBSþCVa

�0.355 �1.710 �1.746
CBSþCVþZPVb

�0.339 �1.701 �1.734
Experimentc 0.3466(11) 1.704(26) 1.739(26)

aValues extrapolated to the complete basis-set limit (CBS) plus core-correlation corrections (CV).
bZero-point vibrational corrections (ZPV) added to the CBSþCV values.
cAbsolute value. Reported uncertainties are 3 times the standard deviation of the fit.
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inner-valence and core region at the corresponding nucleus. Accordingly, additional

tight basis functions are needed for the accurate prediction of electric-field gradients

and nuclear quadrupole-coupling constants [362,371,372]. Adequate choices are provided

by the core-polarized sets within Dunning’s hierarchy of correlation-consistent basis

sets. A benchmark study with the focus on both the basis-set convergence and

electron-correlation treatment has been, for example, carried out by Halkier et al. in

Ref. [362]. Table 18 summarizes their results together with a few additional calculations.10

The electric-field gradient at the boron nucleus, q(B), clearly demonstrates the importance

of steep functions in the used basis set. The values obtained with the cc-pVnZ series of

basis sets do not converge to the proper limit and, thus, can be dismissed as unreliable.

On the other hand, straightforward convergence to the correct limit is seen when using

the cc-pCVnZ sets. A corresponding effect is not seen for the electric-field gradient at the

hydrogen nucleus which is in line with the fact that the electric-field gradient is a local

property and only reflects the quality of the wavefunction at the nucleus considered.

Concerning the principal number n of the basis sets, we note that double- and triple-zeta

sets do not seem to be sufficient. Reliable calculations should be carried out with basis sets

of quadruple-zeta quality or better. Electron-correlation effects are also pronounced for

the electric-field gradients of BH. The deviations of the HF-SCF results from the FCI limit

are quite large (i.e., about 7% for B). MP2 is in the present case (as also known from other

benchmark calculations using BH [373]) not able to recover the large correlation

contribution; CC calculations are hence mandatory. While CCSD already provides results

in close agreement with the FCI values (51% deviation), the agreement of the CCSD(T)

results with FCI is excellent. Core-correlation effects on the other side are less important,

as, for example, the all-electron CCSD(T)/cc-pCVQZ value of �0.676 a.u. differs only

marginally (less than 2%) from the corresponding frozen-core CCSD(T) results given

in Table 18.

Table 18. Basis-set convergence and electron-correlation effects in the quantum-chemical calcula-
tion of electric-field gradients (in a.u.) for the BH molecule [362].

HF-SCF MP2 CCSD CCSD(T) FCI

H cc-pVDZ 0.22215 0.22632
cc-pVTZ 0.16090 0.16016 0.16094 0.16096 0.16099
cc-pVQZ 0.15717 0.15482 0.15539 0.15541 0.15545
cc-pV5Z 0.15765 0.15482 0.15551 0.15552 0.15557
cc-pCVDZ 0.19568 0.19660 0.19752 0.19753 0.19753
cc-pCVTZ 0.16059 0.15952 0.16019 0.16019 0.16021
cc-pCVQZ 0.15727 0.15480 0.15540 0.15540 0.15545
cc-pCV5Z 0.15736 0.15449 0.15518 0.15519 0.15524

B cc-pVDZ 0.42638 0.42263
cc-pVTZ �0.73563 �0.72930 �0.68887 �0.68427 �0.68274
cc-pVQZ �0.74253 �0.73939 �0.69937 �0.69460 �0.69316
cc-pV5Z �0.74006 �0.73846 �0.69842 �0.69364 �0.69222
cc-pCVDZ �0.69794 �0.67862 �0.63437 �0.63077 �0.62933
cc-pCVTZ �0.69318 �0.68946 �0.65121 �0.64724 �0.64587
cc-pCVQZ �0.71045 �0.70899 �0.67037 �0.66595 �0.66457
cc-pCV5Z �0.70739 �0.70729 �0.66891 �0.66445 �0.66310
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There is another important issue in the quantum-chemical calculation of electric-
field gradients. In particular, for heavier nuclei, relativistic effects can be important
(see, for example, Refs. [57,367,374–384]). Table 19 shows the increasing importance of
relativistic effects when going to heavier elements. While relativistic effects are negligible
for the halogen electric-field gradient of HF, they amount for HCl to about 1%, for HBr
to about 7%, for HI to about 18%, and for HAt to about 48%. This means that already
for second- and third-row elements, relativity is for this property of relevance, and the
quantum-chemical treatment should include those effects. While for the heavier elements,
four-component calculations [385] (such as Dirac-HF or corresponding electron-
correlation treatments starting from the Dirac-HF ansatz) are mandatory, for lighter
elements either perturbative schemes (e.g., second-order direct perturbation theory (DPT2)
[386]) or quasi-relativistic approaches based on the Douglas–Kroll–Hess transformation
[387] are sufficient. Vibrational corrections for electric-field gradients can be computed
as explained in Section 3.2. They are in most cases not very pronounced, but clearly should
be considered when aiming at high accuracy.

5.4.2. Examples

In the following, a few examples are given to demonstrate the use of quantum-chemical
calculations of nuclear quadrupole-coupling constants for the detection and in particular
the analysis of rotational spectra.11

Figure 22 compares a portion of the observed spectrum of trans-CH35Cl¼CHF with
those based on theoretical predictions. The first theoretical spectrum has been obtained
without consideration of the chlorine quadrupole coupling, whereas the second spectrum
has been simulated with this coupling properly taken into account. It is evident from the
comparison depicted in Figure 22 that the inclusion of nuclear quadrupole coupling is
essential for a reliable prediction of the actual rotational transitions and especially for their
analysis. The first spectrum, i.e., the one which ignores nuclear quadrupole coupling,
is clearly insufficient for this purpose as the characteristic features are not well reproduced
and a systematic shift is apparent (see figure caption). The good agreement obtained
between experiment and theory for trans-CH35Cl¼CHF is seen in Table 20, where the
computed values for the chlorine quadrupole-coupling tensor elements are compared
with those determined from the experimental spectrum. The calculations have been here
carried out at the CCSD(T) level using a weighted core-polarized valence triple-zeta

Table 19. Comparison of spin-free Dirac-HF (DHF) with second-order direct perturbation
theory (DPT2) and second-order Douglas–Kroll (DK2) results for the electric-field gradients (in
a.u.) at the heavier nucleus in HX (X¼F, Cl, Br, I, At). DK2 results, geometries, and basis sets were
taken from Ref. [376], all other results from Ref. [367].

Molecule qnrlzz DqDHF
zz DqDPT2

zz DqDK2
zz DDPT2/nrl (%) DDPT2/DHF (%)

HF 2.8704 0.0101 0.0101 0.0097 0.4 0.0
HCl 3.6095 0.0502 0.0496 0.0492 1.4 1.2
HBr 7.0704 0.5351 0.5057 0.5294 7.2 5.5
HI 9.7311 1.9788 1.7167 1.9693 17.6 13.2
HAt 15.4088 11.4328 7.4555 11.5577 48.4 34.8
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(cc-pwCVTZ) basis. Vibrational effects have not been included, but they seem (in the case
of CHCl¼CHF) less important. Their neglect might provide the reason for remaining
deviations between theory and experiment, although other factors such as higher-order
correlation effects and basis-set convergence might also play a role. Nevertheless, the
agreement in the present case is more than sufficient to guide the experimental
investigations and to support the analysis of the recorded spectrum via meaningful
input values for the chlorine quadrupole-coupling tensor.

The second example deals with the bromine quadrupole-coupling in CH2FBr.
The focus here is on the role of relativistic effects as well as on the proper choice for
the required bromine quadrupole moment. Concerning the latter, the large scatter in the
literature values [389–396] is seen in Table 21. Indeed, excellent agreement between the
calculated (non-relativistic) and experimental bromine quadrupole-coupling constants is

Figure 22. [Colour online]. Rotational spectrum of trans-CH35Cl¼CHF. Upper trace: observed
spectrum of a portion of the K�1¼ 4 (�463GHz) band. Lower traces: calculated spectrum with
(pink) and without (green) chlorine quadrupole coupling. For the latter a frequency shift
(approximately, þ2GHz) has been applied in order to compare the same transitions.

Table 20. Comparison of experimental and theoretical
(CCSD(T)/cc-wCVTZ) ground-state chlorine quadrupole-
coupling constants of trans-CH35Cl¼CHF [31].

Theory Experiment

�aa �63.13 �63.586(58)
�bb 27.52 27.53(27)
�cc 35.61 36.05(27)
�ab �33.34
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obtained in the case of CH2FBr [289] if one takes the value of 331 mbarn from Ref. [390]

which is also given on the webpage www.webelements.com (see Table 22). This agreement,

however, is not in line with the importance of relativistic effects for third-row elements;

the corresponding corrections should amount to about 7–8% in the case of bromine

(see, for example, Table 19 and also Refs. [367,384]). In this respect, the use of the bromine

quadrupole moment reported by Bieroń et al. [395] or Yakobi et al. [396] is more

satisfying. Using, for example, the value of 313 mbarn given by Bieroń et al., the expected

disagreement (about 5%) between the experimentally determined quadrupole-coupling

constants and the computed non-relativistic values is noted. Relativistic corrections as

obtained at the DPT2 level [367,384] then restore the good agreement with experiment,

now for the proper reason. The remaining deviations are in the range of 1.5–2.5%.

Vibrational effects on the other hand are found to be one order of magnitude smaller

than relativistic effects, but they have been included in the values given in Table 22.

The persisting small discrepancy of 1.4–2.1% between the computed quadrupole-coupling

Table 22. Non-relativistic (nrl)a and relativistic (rel)b values of quadrupole-coupling constants
of CH2

79BrF for the different choices of bromine quadrupole moment (331(4) mbarn from
Ref. [390], 313(3) mbarn from Ref. [395], and 307.5(10) mbarn from Ref. [397]) compared to
experiment. All values include vibrational corrections. Uncertainties due to errors in quadrupole
moment are given in parentheses.

eQ from Ref. [390] eQ from Ref. [395] eQ from Ref. [397]

Experiment nrl rl nrl rl nrl rel

�aa 443.431(8) 446.5(5.4) 474.0(5.4) 422.2(4.0) 449.7(4.0) 414.8(1.3) 442.3(1.3)
�bb �144.933(21) �145.3(1.8) �154.4(1.8) �137.6(1.3) �146.2(1.3) �135.16(44) �144.22(44)
�cc �298.498(21) �300.9(3.6) �319.3(3.6) �284.6(2.7) �303.0(2.7) �279.66(91) �298.07(91)
j�abj 278.56(19) 282.1(3.4) 299.6(3.4) 266.9(2.5) 284.4(2.5) 262.27(84) 279.75(84)

aNon-relativistic values have been obtained at the CCSD(T)/cc-pCVQZ level; vibrational corrections
have been determined at the MP2/cc-pCVTZ level.
bRelativistic corrections have been obtained using DPT2 at the CCSD(T) level using an uncontracted
cc-pVQZ basis.

Table 21. Available values for the nuclear quadrupole moment of 79Br
(in mbarn) in the literature.

Authors Year
Nuclear quadrupole

moment Reference

Lederer, Shirley 1978 293 [389]
Taqqu 1978 331(4) [390]
Kellö, Sadlej 1990 304.5 [391]
Kellö, Sadlej 1996 298.9 [392]
Hass, Petrilli 2000 305(5); 308.7 [393]
Van Lenthe, Baerends 2000 300(10) [394]
Bieron et al. 2001 313(3) [395]
Yakobi et al. 2007 302(5) [396]
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constants obtained using the quadrupole moment from Ref. [395] and the corresponding

experimental values can be taken as an indication that the actual value for the bromine

quadrupole moment is somewhat smaller (e.g., in the range of 306 to 309 mbarn) than

the one given in Ref. [395]. This conclusion certainly is consistent with the lower value

of 302(5) mbarn obtained by Yakobi et al. [396] and also confirmed by a recent

redetermination of the bromine quadrupole moment (307.5(10) mbarn) [397]. Using this

most recent value in the case of CH2FBr, our final values for the elements of the bromine

quadrupole-coupling tensor deviate by less than 0.4% from the corresponding experi-

mental numbers. At this point, it should be also noted that if one uses these more

recent values for the 79Br and 81Br quadrupole moments, good agreement between the

(relativistic) quantum-chemical calculations of the quadrupole coupling constants is

obtained not only for the two main isotopologues CH2F
79Br and CH2F

81Br, but also for

the corresponding deuterated species. For further details, we refer the reader here to Ref.

[384] where a full account on the hyperfine structure in the rotational spectra of the various

isotopologues of CH2FBr can be found.

5.4.3. Determination of nuclear quadrupole moments

By inverting Equation (29),

eQK ¼
���
VK
��

, ð147Þ

it is possible to use experimental nuclear quadrupole-coupling constants ��� to determine

values for the nuclear quadrupole moment eQK of the corresponding nucleus. Actually,

this procedure, based either on atomic or molecular quadrupole-coupling constants, is the

major source for this type of nuclear data [368–370]. As additional information, this

conversion requires an accurate computed value for electric-field gradients. In the case

of atomic systems, whose treatment is beyond the scope of this review, they are

preferably obtained via large-scale numerical MCSCF calculations (see, for example, Ref.

[395]). In the case of molecular systems, large basis-set CCSD(T) calculations are often

used, and the challenge is to ensure the proper basis-set convergence as well as the

adequate treatment of electron correlation. The reliable computation of electric-field

gradients furthermore necessitates the inclusion of zero-point vibrational effects

[392,395,398] and the consideration of relativistic effects [380,392,393,398]. The latter

are particularly important for heavier nuclei (see, for example, Refs. [57,367,374–384]).

In Table 23, we give one example which illustrates the sketched procedure in the case

of 79Br [395]. The experimental quadrupole-coupling constant of HBr used here is

532.3048MHz [399].
The calculated value for the electric-field gradient from non-relativistic large basis-set

CCSD(T) calculations is 6.768 a.u. [367]. Relativistic effects treated at the DPT2

level amount to 0.476 a.u. [367], while vibrational corrections contribute 0.090 a.u. [395].

The total value for the 79Br electric field gradient is then 7.333 a.u. which corresponds

to a value of 308.9mbarn for the 79Br nuclear quadrupole moment, which is in good

agreement with values (313mbarn [395], 302.5mbarn [396], 307.5mbarn [397]) derived

from the quadrupole-coupling constant measured for the bromine atom.
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5.5. Spin–rotation interactions

After nuclear quadrupole coupling, spin–rotation interactions are the next major source

for the hyperfine structure seen in rotational spectra and the focus of many recent

experimental investigations (see, for example, Refs. [384,400–423]). There is also an

interest in spin–rotation interactions beyond rotational spectroscopy, as the nuclear

spin–rotation constants are closely related to the corresponding nuclear magnetic

shielding constants [19] (see Section 5.5.3) and in this way essential for establishing

absolute NMR scales [55,85,424–426].
As explained in Section 2.3, the nuclear spin–rotation tensor consists of an electronic

and a nuclear part. While the latter is completely determined by the molecular geometry,

the electronic contribution corresponds to a second-order property and in this way can

be computed as a second derivative of the electronic energy with respect to the rotational

angular momentum and the appropriate nuclear spin as perturbations [58]. This is

efficiently done using analytic second-derivative techniques (see Ref. [38]). Initial

calculations [427] carried out in a conventional manner using standard basis functions

suffered from a slow basis-set convergence. Nowadays, the corresponding calculations are

performed using perturbation-dependent basis functions [58]. In analogy to NMR

chemical-shift calculations in which magnetic-field dependent basis functions, the

so-called gauge-including atomic orbitals (GIAOs) or London orbitals, are used

[428–431], the basis-set convergence in the calculation of nuclear spin–rotation tensors

can be significantly accelerated when the following J-dependent basis functions are

used [58]

��ðr, JÞ ¼ expðiðI�1 � JÞ � R� � rÞ ��ðrÞ: ð148Þ

In Equation (148), ��(r) denotes the usual basis functions with center R�, e.g., the

Gaussians discussed in Section 4.3. One can refer to the basis functions given in

Equation (148) either as J-including atomic orbitals (JIAOs) or rotational London

orbitals.
The improved basis-set convergence when using these type of basis functions has been

amply documented in Ref. [58]. In addition, it should be noted that the use of JIAOs

renders any discussion concerning the choice of origin for the electronic angular

momentum in the perturbed operator (see Equation (43)) unnecessary.

Table 23. Determination of the nuclear quadrupole moment (in mbarn) of 79Br based on the
experimental nuclear quadrupole-coupling constant (in MHz) for H79Br and computed bromine
electric-field gradients (in a.u.).

Value
Total
value

Nuclear quadrupole
moment eQK

Experimental nuclear quadrupole coupling (v¼ 0) [399] 532.3048
CCSD(T)/cc-pCV5Z (uncontracted) [367] 6.7678 6.7678 334.7
þ relativistic correction (DPT2) [367] 0.4759 7.2437 312.7
þ vibrational correction [395] 0.0900 7.3337 308.9
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5.5.1. Accuracy

The computational requirements for the reliable calculation of spin–rotation tensors

are documented by the results given in Table 24 for the hydrogen of H2
16O [407]. Clearly,

electron-correlation effects are important (about 3%) and the CCSD(T) approach appears

to be the method of choice for the corresponding calculations. More interesting is the issue

of basis-set convergence. While a significant speed-up is already obtained by using

perturbation-dependent basis functions, it should be noted that still the basis-set

requirements are rather demanding. In the case of H2
16O, it is seen that basis sets of at

least quadruple-zeta quality are required to obtain converged values. The changes when

going from triple to quadruple-zeta are still in the range of a few percent, while a further

increase in size only causes marginal changes. More important are in some cases the

consideration of additional diffuse functions [58,432], though this is not the case for

H2
16O, and the inclusion of vibrational effects. In our example, the latter contribute

about 0.5–1.5 kHz, and in this way need to be considered for accurate predictions.

The best theoretical estimates for the individual tensor elements agree quite well with the

Table 24. Electron-correlation effects, basis-set convergence, and vibrational corrections for the
hydrogen spin–rotation tensor of H2

16O (kHz). For further details, see Ref. [407].

Caa Cbb Ccc Cab Cba

HF-SCF/cc-pCVTZ �35.35 �32.07 �34.00 �46.84 �20.99
HF-SCF/cc-pCVQZ �34.68 �31.62 �33.62 �46.22 �20.93
HF-SCF/cc-pCV5Z �34.55 �31.38 �33.48 �46.01 �21.01
HF-SCF/cc-pCV6Z �34.51 �31.33 �33.44 �45.99 �21.01
HF-SCF/aug-cc-pCVTZ �35.38 �32.16 �34.21 �47.11 �21.60
HF-SCF/aug-cc-pCVQZ �34.78 �31.58 �33.68 �46.29 �21.18
HF-SCF/aug-cc-pCV5Z �34.60 �31.40 �33.51 �46.07 �21.06
HF-SCF/aug-cc-pCV6Z �34.53 �31.33 �33.44 �45.98 �21.01
MP2/cc-pCVTZ �36.64 �32.63 �34.68 �48.63 �20.46
MP2/cc-pCVQZ �35.74 �31.94 �34.04 �47.59 �20.19
MP2/cc-pCV5Z �35.59 �31.56 �33.82 �47.22 �20.24
MP2/cc-pCV6Z �35.56 �31.47 �33.75 �47.18 �20.23
MP2/aug-cc-pCVTZ �36.82 �32.64 �34.89 �48.90 �21.10
MP2/aug-cc-pCVQZ �35.95 �31.82 �34.10 �47.67 �20.48
MP2/aug-cc-pCV5Z �35.69 �31.55 �33.85 �47.29 �20.29
MP2/aug-cc-pCV6Z �35.58 �31.45 �33.75 �47.14 �20.22
CCSD(T)/cc-pCVTZ �36.82 �32.98 �35.00 �49.79 �21.33
CCSD(T)/cc-pCVQZ �35.87 �32.24 �34.33 �48.59 �21.10
CCSD(T)/cc-pCV5Z �35.70 �31.88 �34.11 �48.20 �21.04
CCSD(T)/cc-pCV6Z �35.67 �31.79 �34.05 �48.15 �21.02
CCSD(T)/aug-cc-pCVTZ �36.96 �32.98 �35.20 �49.95 �21.90
CCSD(T)/aug-cc-pCVQZ �36.05 �32.13 �34.39 �48.64 �21.27
CCSD(T)/aug-cc-pCV5Z �35.79 �31.87 �34.15 �48.27 �21.09
CCSD(T)/aug-cc-pCV6Z �35.69 �31.77 �34.05 �48.13 �21.01
Vibrational correctionsa 1.19 0.62 1.54 �1.18 �0.12
Best theoretical estimate �34.50 �31.15 �32.51 �49.31 �21.13
Experiment �35.05(25) �31.02(12) �32.99(9)

aVibrational corrections computed at the CCSD(T)/aug-pCV5Z level using second-order vibrational
perturbation theory.
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corresponding experimental values [407] and in this way give an indication of what kind of
accuracy can be achieved in theoretical predictions of spin–rotation constants.

5.5.2. Examples

As for the other spectroscopic parameters, the examples in this section have been chosen to
demonstrate the importance of quantum-chemical calculations for the experimental
investigation of spin–rotation interactions. We show how quantum-chemical computa-
tions can be used to verify or challenge experimental data, emphasize the role of calculated
hyperfine parameters in the analysis of experimental spectra, and point out that nowadays
quantum-chemical calculations are often used to guide experimental investigations.

Let us start with an example for the last case, i.e., the guidance of the experiment. In an
effort to investigate spin–rotation interactions in silicon-containing compounds, silyl
fluoride (SiH3F) was chosen in Ref. [408] as a possibly interesting target molecule for
Lamb-dip measurements. The reasons were simply that SiH3F has a sufficiently large
dipole moment (�0¼ 1.2 D, vibrationally averaged value at the CCSD(T)/cc-pCVTZ level)
and that it is easily produced in a DC discharge reaction using phenyl silane (C6H5SiH3)
and tetrafluoromethane (CF4) [408]. High-level quantum-chemical calculations together
with simulations of the spectra based on the computed parameters have then been used to
determine which spin–rotation constants (fluorine and/or hydrogen in the case of the main
isotopologue and 30SiH3F as well as silicon, fluorine, and/or hydrogen in the case of
29SiH3F) are determinable and which rotational transitions are most promising for this
purpose. Table 25 summarizes the computed spin–rotation tensors, while Figure 23
provides examples for the simulated spectra (together with the recorded ones) of 28SiH3F
and 29SiH3F. In the case of the main isotopologue, the calculations indicate that only the
fluorine spin–rotation interaction is sizable and the simulations reveal that, using the
resolution provided by the Lamb-dip technique, the corresponding splittings are detectable
only for larger K values. This expectation is confirmed by the actual measurements and
Figure 23 shows the splitting due to the fluorine spin–rotation interaction for the
J¼ 15 14, K¼ 13, transition. In the case of 29SiH3F, both the silicon and fluorine spin–
rotation interactions are of comparable magnitude though of opposite sign. The
simulations based on the computed parameters then suggest that these two interactions
lead to a hyperfine structure that is hardly resolvable and that only a rather broad signal
should be seen that cannot be analyzed further. The hydrogen spin–rotation interactions
are again significantly smaller (see Table 25) but in this case, due to an additional
broadening of the signal, hamper the analysis further. Again, the predictions are confirmed
by the experimental investigations, and the J¼ 15 14, K¼ 13, transition is shown in
Figure 23. The reliability of the theoretical predictions is not only seen by the good
agreement between the simulated and experimental spectra but also by the favorable
comparison in the value for the fluorine spin–rotation interaction constants for 28SiH3F.
The theoretical value of 45.35 kHz agrees well with the experimentally derived one of
45.74(35) kHz. In the case of 30SiH3F, an analysis of the hyperfine structure was hampered
in Ref. [408] only by the fact that the corresponding spectra were recorded in natural
abundance with low resolution. Though the original goal to determine the silicon spin–
rotation interactions could not be achieved in the investigation of the rotational spectrum
of silyl fluoride reported in Ref. [408], this example clearly shows how theory can be used
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to guide the investigations and in particular predict which parameters are determinable
and which are not.

In the second example, quantum-chemical calculations are used to verify/challenge the
experimental values [400,402] for the halogen spin–rotation constants of the two carbenes

Figure 23. [Colour online]. The J¼ 15 14, K¼ 13, transition in the rotational spectrum of silyl
fluoride: comparison of experimental (P¼ 0.4 mtorr, mod. depth¼ 16 kHz for 28SiH3F; P¼ 1.2
mtorr, mod. depth¼ 40 kHz for 29SiH3F – recorded in natural abundance) and calculated spectra
(mod. depth¼ 15 kHz).
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CF2 and CCl2. For this purpose, high-level CCSD(T) calculations have been carried out
using various sequences of correlation-consistent basis sets (for details, see Ref. [433]).
Theoretical best estimates have been provided via extrapolation to the complete basis-set
limit and consideration of corrections for core correlation and zero-point vibrational
effects. The comparison with the experimental results taken from Refs. [400,402]
revealed good agreement in the case of CCl2 and a severe disagreement in the case
of CF2 (see Table 26). The good agreement seen in the case of CCl2 as well as the high
theoretical levels used in the calculations were strong arguments for the reliability of
the computed values for CF2 so that the only possible conclusion had been that the
experimental values for CF2 were erroneous. This suggestion was confirmed by a
reanalysis of the experimental data [401] which revealed a misassignment of the hyperfine
components of the JKa,Kc

¼ 91,8� 82,7 transition. As seen in Table 26, the analysis based on
the revised assignment led to quite different spin–rotation parameters that, unlike the
original values, are in good agreement with the computational predictions. The essential
point is that the verification of the assignment has been only possible via comparison of
the final hyperfine parameters with the corresponding computed values; otherwise, both
assignments lead to a satisfactory interpretation of the experimental results. Furthermore,
and unlike for many other parameters, it is not easy to guess the proper values for the
spin–rotation constants and in this way to dismiss one of the assignments as unreliable. It
is clear that quantum-chemical calculations are essential to verify the ‘‘correctness’’ of the
analysis of the experimental data and to provide reliable input values for the analysis of the
experimental hyperfine structure.

The third example demonstrates how quantum-chemical calculations can support the
analysis of experimental spectra. It deals with the hyperfine structure of the rotational
spectrum of H13CN which has been measured using the Lamb-dip technique [404]. From
the line profile analysis, it turns out that it is necessary to include all hyperfine interactions,
i.e., the nitrogen quadrupole coupling, the spin–rotation interactions due to nitrogen,
carbon, and hydrogen as well as the direct spin–spin interaction between hydrogen and
carbon, to obtain satisfactory agreement between experiment and theory. However, the
hydrogen spin–rotation constant, C(H), is found to be not experimentally determinable,
and thus needs to be fixed to the computed value of �4.22 kHz. To be more specific, in this

Table 26. Comparison of experimental and computed spin–rotation tensors (in kHz) for CF2 and
CCl2 [433].

Caa Cbb Cab Cba Ccc

CF2

Best theoretical estimatea 380.86 33.14 �122.87 �16.76 13.83
Experiment (2000) b 783.(19) 108.(6) �24.(6)
Experiment (revised, 2005)c 379.(11) 31.(4) 11.(4)
CCl2
Best theoretical estimatea 56.83 2.69 �20.46 �0.73 1.25
Experimentd 58.2(9) 2.8(2) 1.4(3)

aRef. [433].
bRef. [400].
cRef. [401].
dRef. [402].
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case neglect of the hydrogen spin–rotation constant affects the appearance of the spectrum
(as seen in Figure 24), as the position of the left peak is only correctly reproduced once
the hydrogen spin–rotation constant is included. In addition, the fit in this case yields
a reliable value for the hydrogen-carbon spin–spin coupling constant only when C(H) is
considered. The values are 23.0(37) kHz and 30.4(35) kHz with and without inclusion of
C(H), respectively, in comparison with a computed value of 22.9 kHz. Unlike the spin–spin
coupling, all other hyperfine parameters are unaffected by the neglect of the hydrogen
spin–rotation interactions. This example demonstrates the importance of including all
(or as many as possible) hyperfine interactions in the analysis of the spectra. Additionally,
it shows that it is clearly preferable to fix those parameters that cannot be determined to
the corresponding computed values instead of neglecting them entirely.

5.5.3. Absolute NMR scales

As already mentioned, the nuclear spin–rotation constants determined via rotational
spectroscopy can be used to set up so-called experimental absolute NMR scales
[55,85,409,424–426]. The theoretical basis for this is the following relationship

�Kpara ¼ �
mp

3megK
I�1CK

el ð149Þ

between the electronic part of spin–rotation constant CK
el and the paramagnetic part of the

shielding for a given nucleus [52]. The analysis is then completed by augmenting the

Figure 24. [Colour online]. A portion of the J¼ 1 0 transition (the DFN¼ 2 1 components) in
the rotational spectrum of H13CN is shown. In addition to the experimental spectrum (in red), the
contributions of each hyperfine parameter to the hyperfine pattern are also depicted (from the
bottom to the top): (i) only eQq(14N)þC(14N)þC(13C) (in green); (ii) eQq(14N)þC(14N)
þC(13C)þS12 (in black); (iii) eQq(14N)þC(14N)þC(13C)þS12þC(H) (in blue) [404].
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paramagnetic shielding with a computed value for the diamagnetic part. The latter task is
not difficult, as computation of the corresponding expectation value is rather straight-
forward and does not require special considerations with respect to the electron-
correlation treatment and choice of basis set. The whole procedure is depicted in Figure 25
and involves also the adequate treatment of vibrational effects as well as temperature
corrections. Note that these corrections are preferably obtained using computations,
and thus the only experimental contribution to the absolute shieldings is actually the
spin–rotation constants determined from the rotational spectrum.

As an example for the determination of an absolute shielding scale, we present in
Table 27 the analysis in the case of oxygen based on experimental spin–rotation constant

Figure 25. [Colour online]. Procedure for determining nuclear magnetic shielding constants �(T)
and absolute NMR scales from experimentally derived nuclear spin–rotation constants.

Table 27. Determination of the absolute 17ONMR scale based
on experimental spin–rotation constants from Ref. [414] and [434].
For further details, see Refs. [85,425,435].

Contribution Old scale (1984,1996) New scale (2002)

C(17O) (kHz) �30.4(12)a �31.61(4)b

DCvib (kHz) �0.1 �0.1
�para (ppm) �483.7(172) �501.8(6)
�dia (ppm) 445.1 445.1
�eq (ppm) �38.7(172) �56.7(6)
D�vib (ppm) �5.73 �5.73
D�T¼300K (ppm) �0.35 �0.35
�T¼300K (ppm) �44.8(172) �62.7(6)

aRef. [434].
bRef. [414].
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for C17O. The analysis based on the old value, which was determined in 1981 in a
radioastronomical study [434], yields a value of �44.8 ppm for the oxygen shielding of CO.
Based on the error estimate for the spin–rotation constant, the uncertainty for this
shielding value is �17.2 ppm. Quantum-chemical calculations [85] indicated, in line with
the large error bar, that this value cannot be considered accurate and that a reinvestigation
is warranted. The current best theoretical estimate for the oxygen shielding of CO amounts
to �58.9 ppm and thus deviates by about 14 ppm from the experimental shielding reported
in Ref. [435]. However, a new analysis was only possible after laboratory measurements of
the rotational spectrum of C17O using the Lamb-dip technique were reported in 2002 [414].
The corresponding spin–rotation constant, which differed by 1.2 kHz from that in Ref.
[434] (see Table 27), was then used [425] to improve the oxygen shielding scale and to
achieve consistency between theory and experiment. In Table 27, we report the corrections
as obtained in Refs. [85,409] within large-basis set CCSD(T) calculations. It should be
pointed out that vibrational corrections are not negligible and contribute about �5.7 ppm
to the final value. On the other hand, temperature corrections are an order of magnitude
smaller. The new value of �62.7 ppm for �(O) of CO is in good, though still not perfect,
agreement with theory (�58.9 ppm). A somewhat better agreement, however, is achieved
when using the oxygen spin–rotation constants of H2

17O as a basis for the 17ONMR scale
(for details, see [409]). The corresponding analysis yields then, thereby using the
experimental shift of CO with respect to water, a value of �60.0(3) for �(O) of CO
which agrees within roughly 1 ppm with the corresponding theoretical estimate.

5.6. Spin–spin couplings

Dipolar spin–spin couplings often need to be considered for the proper analysis of the
hyperfine structure of rotational spectra (see, for example, the case of H13CN in Section
5.5.2). Furthermore, spin–spin couplings offer an alternative route to geometric informa-
tion [436]. This aspect can be also exploited in solid-state NMR spectroscopy which allows
the determination of dipolar couplings (for an example, see Ref. [437]).

5.6.1. Accuracy

In principle, the determination of the dipolar coupling constants only requires knowledge
of the molecular geometry (see Equation (40)). Quantum-chemical investigations,
however, are necessary to provide the vibrational corrections which are given via

DKL
ij ¼ �

1

c2
�K�L

D 3ðRKLÞiðRKLÞj � �ijR
2
KL

R5
KL

E
vib
: ð150Þ

The expectation value is taken here with respect to the vibrational wavefunction and most
conveniently evaluated using the perturbative techniques discussed in Section 3.2 [436].
This means that the determination of vibrationally corrected dipolar couplings necessitates
the computation of the quadratic (harmonic) and cubic (anharmonic) force fields and
in this way is rather costly. These calculations, however, are necessary in order to obtain
the spectroscopic parameters discussed earlier in this review. Thus, the computation of
vibrationally averaged dipolar couplings is a rather trivial byproduct of the other
calculations.
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The importance of vibrational corrections for the accurate prediction of dipolar spin–
spin couplings is seen in Table 28.

The agreement between theory and experiment is consistently improved when
vibrational effects are accounted for with the latter amounting to up to a couple
of kHz, i.e., a few percent. Another aspect which should be mentioned here is that
rotational spectroscopy actually provides an effective spin–spin coupling constant, DKL

eff ,
which also includes the (traceless) anisotropic part DJKL of the indirect spin–spin coupling

DKL
eff ¼ DKL þ DJKL=3: ð151Þ

There exists no experimental possibility to distinguish between these two contributions,
and only quantum-chemical calculations provide a means to separate them. Techniques
for the calculation of indirect spin–spin couplings have been developed [439–442] and
can be also used for the present task, i.e., the evaluation of DJKL. Nevertheless, it is usually
assumed that the indirect part of the spin–spin coupling is significantly smaller than the
dipolar one and thus can be neglected, though there is some evidence that this is not always
the case [443].

5.6.2. Examples

A case for which the dipolar spin–spin couplings have been investigated in some detail
is phosphine, PH3 [417]. Figure 26 demonstrates the importance of spin–spin interactions
for the interpretation of the hyperfine structure of the corresponding rotational spectrum.
In this figure, the J¼ 10 00 rotational transition is shown as recorded using the

Table 28. Comparison of experimental and computed dipolar
coupling constants (in kHz) for HF, HCl, and HCN. Reported are
the coupling constants D¼�1/2Dzz. The equilibrium and vibration-
ally averaged values have been obtained at the CCSD(T)/cc-
pwCVQZ level. For further details, see Ref. [436].

Molecule Equilibrium
Vibrationally
averaged Experiment

HF
HF 147.219 144.191 143.375(25)a

DF 22.599 22.262 22.170(45)a

HCl
H35Cl 5.706 5.613 5.585b

H37Cl 4.750 4.672 4.4(4)c

D35Cl 0.876 0.866 0.86d

D37Cl 0.729 0.721 0.72d

HCN
H13CN (H–C) 24.977 22.931 23.0(37)e

aRef. [272].
bRef. [438].
cRef. [411].
dRef. [412].
eRef. [404].
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Lamb-dip technique and compared with simulated spectra that consider various subsets
of the hyperfine interactions. It is clearly seen how the dipolar couplings change the
appearance of the spectrum. Accordingly, they need to be considered in the analysis.
The a priori knowledge of the spin–spin coupling constants (theoretical predictions at
the CCSD(T)/cc-pwCVQZ level, for the exact definition of the D1 and D3 constants, see
Ref. [417]) turned out to be essential for the analysis of the spectra which provide the
first set of dipolar spin–spin couplings for PH3. The corresponding experimental values
(2.03(41) kHz for Dzz(P-H) and 16.9(13) kHz for Dzz(H-H)) are in good agreement
with the computational results (vibrationally corrected data: 2.13 kHz and 16.90 kHz,
respectively).

Table 29 documents how analysis of experimental dipolar coupling constants can
provide geometrical information and in some cases even the equilibrium geometry [436].

Figure 26. [Colour online]. The J¼ 10 00 transition in the rotational spectrum of PH3. In addition
to the experimental spectrum, the contributions of each hyperfine parameter to the hyperfine pattern
are also depicted. Starting from the top (unperturbed transition: ‘‘no hfs’’ spectrum) the effect of the
inclusion of each relevant hyperfine constant is shown: (1) only CN(

31P), (2) CN(
31P)þ (Cx(H)

þCy(H)), (3) CN(
31P)þ(Cx(H)þCy(H))þD1(P-H), (4) CN(

31P)þ (Cx(H)þCy(H))þD1(P-H)
þD3(H-H) [417].

Table 29. Equilibrium structure of NH3 from experimental dipolar
coupling constants of 14NH3 and computed vibrational corrections.
Distances in Å and angles in degrees [436].

re [DC] Experimenta CCSD(T)/cc-pwCVQZ

N-H 1.0121(11) 1.0114(6) 1.0111
ffHNH 107.05(9) 107.17(18) 106.38

aRef. [32]: empirical equilibrium structure.
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The case shown is ammonia, NH3, for which the experimental couplings have been given
in Ref. [444]. These values can be corrected for vibrational effects, determined
quantum-chemical calculations [436], to obtain equilibrium values for the dipolar
coupling constants that can be then inverted by using Equation (40) in order to get the
corresponding bond distances. The corresponding distances are given in Table 29 and
compared with those derived from rotational constants, and satisfactory agreement is
noted. Though the accuracy of the determined parameters is somewhat lower than
that of the parameters determined in the traditional way via the rotational constants,
we consider the determination of structures via dipolar coupling constants a viable
alternative. The main advantages are first that the issues associated with isotopic species
are avoided and second that the analysis of dipolar couplings allows the determination
of partial structures. The use of computed vibrational corrections further enables the
determination of empirical re geometries similar to the case of rotational constants.
The only drawback is that dipolar couplings often have not been determined or are only
known with limited accuracy. In this way, it will be certain that the traditional way based
on rotational constants will remain the standard choice for accurate structure determi-
nation and that the use of dipolar couplings will remain the exception and only be applied
in special cases.

6. Summary

An overview of state-of-the-art quantum-chemical techniques for evaluation of the
parameters needed in the area of rotational spectroscopy has been given. A lengthy
discussion of the theoretical background of the advocated quantum-chemical schemes has
been supplemented by examples which on one hand document the accuracy which can be
achieved in quantum-chemical computations of these parameters and on the other hand
describe the interplay of theory and experiment in the field of rotational spectroscopy.
It is the belief of the authors that this interplay represents a powerful synergism
in chemical and physical research and significantly enhances the available possibilities. It is
hoped that the examples given here convince the reader to take part in this interplay and to
exploit the many possibilities that quantum-chemical calculations offer in the area of
rotational spectroscopy. In this way, the review is intended to bridge the gap between two
quite different scientific communities, namely quantum chemistry (theory) and rotational
spectroscopy (experiment) and to serve the purpose of enriching interactions between the
two fields.
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Notes

1. Note that we use here and in the following atomic units, i.e., �h¼ 1, me¼ 1, e¼ 1, and 1/4�	0¼ 1.
2. Rotational constants are here given in atomic units (see note 1). The conversion factors to the

commonly used units in rotational spectroscopy are: 219474.7 in the case of cm�1 and
6.579874�109 in the case ofMHz.

3. The following expressions are valid if the rotational and, later on in the text, centrifugal
distortion constants are given in energy units. If they are in frequency units, an additional factor
of 1/h is required and Equation (11) reads EJ,K/h¼BJ(Jþ 1)þ (A�B)K2.

4. Note that this function D, which is usually labeled as C in spectroscopy textbooks [1,2], has been
so designated in order to avoid any confusion with the spin–rotation constants discussed here,
as well.

5. In the present review, a sign convention for spin–rotation constants opposite to that originally
used by Flygare [52] has been adopted; i.e., the convention that leads to negative spin–rotation
constants for hydrogen has been adopted.

6. In the working wavelength region of rotational spectroscopy, the methods of generation and
detection of the radiation render it more convenient to use frequency instead of wavenumber for
the characterization.

7. In the perturbation treatment, the operator Û has historically been ignored, apart from the
leading term, which gives a constant contribution of � 1

4

P
� B

�
e to the zero-point energy of

polyatomic molecules. This is justified empirically, as the effects of Û result in contributions to
energy level splittings that are barely detectable spectroscopically.

8. Note that � as a regular symbol stands for the vibration–rotation interaction constant, while the
� used as a superscript refers to inertial axes a, b or c.

9. In the present section, to simplify notations and to be consistent with what is the standard in
quantum chemistry, no hats are used to denote operators.

10. Note that the FCI results have been recalculated with orbital-relaxation effects included.
11. It should be noted that such predictions are equally useful in the field of solid-state

nuclear-magnetic resonance spectroscopy. For an example, see Ref. [388].
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[190] M. Heckert, M. Kállay, D. P. Tew, W. Klopper, and J. Gauss, J. Chem. Phys. 125, 0044108

(2006).
[191] C. Puzzarini, M. Heckert, and J. Gauss, J. Chem. Phys 128, 194108 (2008).
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[287] A. Huckauf, A. Guarnieri, Ä. Heyl, P. Botschwina, C. Bartel, and D. Lentz, Chem. Phys. Lett.

303, 607 (1999).
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[369] P. Pyykkö, Mol. Phys. 99, 1617 (2001).
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[400] N. Hansen, H. Mäder, and F. Temps, Chem. Phys. Lett. 327, 97 (2000).
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[440] O. Vahtras, H. Ågren, P. Jørgensen, H. J. Aa. Jensen, S. B. Padkjaer, and T. Helgaker,

J. Chem. Phys. 96, 6120 (1992).
[441] S. A. Perera, M. Nooijen, and R. J. Bartlett, J. Chem. Phys. 104, 3290 (1996).

[442] A. A. Auer and J. Gauss, J. Chem. Phys. 115, 1619 (2001).
[443] D. L. Bryce, R. E. Wasylishen, J. Autschbach, and T. Ziegler, J. Am. Chem. Soc. 124, 4894

(2004).

[444] J. T. Hougen, J. Chem. Phys. 57, 4207 (1972).

International Reviews in Physical Chemistry 367

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1


